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Initial-Value Problem for Artificial Satellites Motion in
The Earth�s Gravitational Field with Axial Symmetry

 Using Eulerian Parameters
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Astronomy Department, Faculty of Science,
King Abdulaziz University, Jeddah, Saudi Arabia

ABSTRACT. In this paper, a general recursive and stable computational
algorithm is established for the initial-value problem of the Eulerian
parameters for satellites prediction in the Earth�s gravitational field
with axial symmetry. Applications of the algorithm are also given.

Introduction

The usage of either the analytical or numerical techniques on the conventional
equations of space dynamics for the motion of space vehicles and artificial sat-
ellites yield inaccurate prediction for their positions and velocities. This is be-
cause that, these equations are nearly singular for the cases of close approach,
which are of common occurrence in mission and re-entry problems of the space
travel. Such events produce large gravitational forces and sharp bend which in
turn causes poor prediction. Due to the great importance of getting very ac-
curate predictions of these bodies for the practical and military purposes, which
in turn has led several authors to establish new forms of the equations of motion
capable of studying the perturbed orbits of these bodies. The author�s ideas
relied on transforming the equations of motion to a form which is characterized
by very stable properties with respect to the numerical as well as the analytical
integrations.

One such transformation, is the Eulerian parameters[1]. In the present paper, a
general recursive and stable computational algorithm is established for the in-
itial-value problem of the Eulerian parameters for satellites prediction in the
Earth�s gravitational field with axial symmetry.
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Euler Parameter Regularization

The most interesting connection between orbit dynamics and rigid body dy-
namics is established if one conceives of the orbit normal �z , the radius vector �x,
and the orthogonal vector �y = �z × �x as a rigid body[2]. It is immediately possible
to introduce many results from rigid body dynamics into orbital/trajectory dy-
namics. While this connection may seem a bit artificial, the consequences are in
fact significant; the most attractive system of linear differential equations results
from this line of reasoning.

Euler Parameters

Let the unit vectors of the inertial axes be (�x, �y, �z), then the  triad (�x, �y, �z) at
any instant projects onto (�i, �j, �k) according to

�x = �i c11 + �j c12 + �k c13 , (2.1.1)

�y = �i c21 + �j c22 + �k c23 , (2.1.2)

�z = �i c31 + �j c32 + �k c33 . (2.1.3)

The direction cosines (cij) are usually expressed as functions of three Euler
angles; this leads to a system of nonlinear transcendental differential equations
which invariably contain a singularity. Alternatively, one can introduce four Eu-
ler parameters and avoid these problems altogether. Although the (�x, �y, �z) axes
are nearly spinning about �z with angular velocity dϕ / dt, where ϕ is the true
anomaly (a part of a constant), the perturbations cause departures from this
Keplerian truth which must be accounted for. As a function of Euler parameters,
the direction cosines are

c11 = u2
1 � u2

2 � u2
3 + u2

4 , (2.2.1)

c12 = 2 (u1 u2 + u3 u4) , (2.2.2)

c13 = 2 (u1 u3 � u2 u4) , (2.2.3)

c21 = 2 (u1 u2 � u3 u4) , (2.2.4)

c22 = � u2
1 + u2

2 � u2
3 + u2

4 , (2.2.5)

c23 = 2 (u1 u4 + u2 u3) , (2.2.6)

c31 = 2 (u1 u3 + u2 u4) , (2.2.7)

c32 = 2 (u2 u3 � u1 u4)  , (2.2.8)

c33 = � u2
1 � u2

2 + u2
3 + u2

4 . (2.2.9)

Geometrically, ui ; i = 1, 2, 3, 4 are closely connected to Euler�s Principal

Rotation Theorem[3], which states that a general rotational transformation can
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be accomplished by a single rigid rotation (through a principal angle ψ) about a
principal unit vector

�l = l1 �x + l2 �y + l3 �z . (2.3)

We define 

Thus

u1
2 + u2

2 + u2
3 + u2

4 = 1 (2.5)

The most important kinematical truth is that the Euler parameters rigorously
satisfy the bilinear orthogonal relationships[2]

These equations can be written in a matrix form as

where

Note that the matrix B is skew symmetric, and

ω = ω1 �x + ω2 �y + ω3 �z , (2.9)

  

u for i

u

i = =

=

l1

4

1
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1 2 3

1
2

sin  ,            , , .  ,
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ψ

ψ
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(2.6.2)

(2.6.3)

(2.6.4)

˙ ( )  ,

˙ ( )  ,
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˙ ( – )  ,
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u u u u
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=
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−
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is the instantaneous angular velocity of (�x, �y, �z). The angular velocity of (�x, �y, �z),
for Keplerian motion is

ω1 = ω2 = 0 , (2.10.1)

where p* is the semi-latus rectum of osculating orbit, µ is the Earth�s gravita-
tional constant and r is the magnitude of the radius vector r.

Change of Variables

Equations (2.6) can be modified significantly by choosing a variable other
than time as independent variable. Vitins[2] pursued these ideas with the fol-
lowing variable changes:

where V is the perturbed time-independent potential.

Satellite Motions in Terms of Euler Parameters

The differential equation in rectangular variables r = (x, y, z) describing the
rate of change of the position and velocity for a satellite orbiting the Earth is
given by

where p* is the resultant of all non-conservative perturbing forces and forces
derivable from a time-dependent potential. Upon introducing the trans-
formations of Equations (2.11), we get the following equations:

ω ϕ
3 2= =

µd
dt

p

r

*
 ,

(2.11.1)

(2.11.2)

(2.11.3)

(2.11.4)

(2.11.5)

ˆ ( )ˆ ( )ˆ ( ) ˆ ,

 ,

*  ,

*
 ,

*
–  

x
r

u u u u i u u u u j u u u u k

r

p p
r

V

dt
r

p
d

p
d

p
p

r
p

V

= = − − + + + + −

=

= +
µ

=
µ

=
µ

⋅

= =
µ

r
1
2

2
2

3
2

4
2

1 2 3 4 1 3 3 4

2

2

2

2

2 2

1

2

1 1

1
2

ρ

ν ϕ
ρ

ϕ

ν

˙̇ * –  ,r
r

p p
V
r

+ µ = =r
3

∂
∂

(2.12)

(2.10.2)
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where

< a, b > is used to denote the scalar product of the two vectors a and b.

Keplerian Motion

The general differential Equations (2.13) for Keplerian motion (p = V = p* =
0) reduce to

du
d

u u

du
d

u u

du

d
u u

du
d

u u

d

d p
g

dp
d

g

dt
d p

1
1 4 3 2

2
1 3 3 1
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1 2 3 4

4
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where ϕ is the change in true anomaly. Integrating the above Equations we get
for Keplerian solution:

The α�s are constants evaluated from initial conditions.

Satellite Motion in the Earth�s Gravitational
 Field with Axial Symmetry

In this section, the initial value problem of the Eulerian parameters will be
considered in detail for satellite motion in the Earth�s gravitational field with
axial symmetry. A general, recursive and stable computational algorithm of this
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problem will be developed for any conic motion and for any number N ≤ 2 of
the zonal harmonic coefficients of the Earth�s gravitational potential. Applica-
tions of the algorithm are given in section 3.2.

Expressions of V, ∂V / ∂r, and (p�x , p�y , p�z)

For the case of axial symmetry we have

where V is the Earth�s gravitational field with axial symmetry, R is the Earth�s
mean equatorial radius; Γ the latitude of the satellite, Jk , k = 2, 3, ... , N are di-
mensionless numerical coefficients (note that the infinite series of Equation
(3.2) is truncated at some positive integer N), and Pl(Z) is the Lagendre poly-
nomial in Z of order l with Z ∈ [�1, 1]. By the same argument as in[4], it could
be shown that the economical and stable recurrent computations of V and ∂V /
∂r in terms of the Eulerian parameters are

where

Q�s and D�s satisfy economical and stable recurrence formulae of the forms :
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(3.9)

c�s are given in terms of u�s by Equations (2.2).

Finally, by using Equations (3.4), (3.5) and (3.6) we get

In what follows, some fundamental computational algorithms for the present
initial value problem are given. Each algorithm is described by its purpose, in-
put, and its computational sequence.

Computational Algorithms

Computational Algorithm (1)

Purpose: To compute uj ; j = 1,2,...,8 from r, r⋅ and V(r) at any epoch to,

where (u1, u2, u3, u4) are the Euler parameters, xxxxx xxxxxx xxxxxx xxxx xxx

u8 = to. [Note, for simplicity of notation, we shall use hereafter (x1, x2, x3) to re-
fer respectively to (x, y, z)].

Input: to ; µ ; r ; r⋅ ; V(r)
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(5)

Computational Algorithm (2)

Purpose: To compute V using the recursive formulations of Section 3.1 in
terms of:

(a) The position vector r or

(b) Euler parameters 
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Input: µ, R, N, Jk ; k = 1, 2,...,N, IT

Where  IT = 1, if it is required to compute V from r

             IT = 2, if it is required to compute V from uj.

T is a given vector of dimension five such that its components are:

(x1, x2, x3, 0, 0) if  IT = 1  or

(u1, u2, u3, u4, u5) if  IT = 2.

Computational Sequences

(1) If     IT = 2     go to step 6

(2) r = (T2
1 + T2

2 + T2
3)1/2

(3) Qo = R / r

(4) E = T3 / r

(5) Go to step 8

(6) Qo = R T5

(7) E = 2(T1T3 � T2T4)

(8) H1 = Q2
o E

(9) S ← 0

(10) Ho ← Qo

(11) H2 ← H1

(12) For all k = 2(1)N Compute

A = QoH0 ; G = E H2 ; B = G � A ;

H2 = Qo (B + G � B / k) ;

Ho ← H1 ; H1 ← H2 ; S ← S + JK H2 .

(13) V = (µ / R) S

(14) END.

Note that, the case in which IT = 1 of this algorithm could be used in com-
puting the total energy.
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Computational Algorithm (3)

Purpose: To compute ∂V / ∂r using the recursive formulations of Section 3.1
in terms of:

(a)  The position vector r

(b)  Euler parameters 

Input: µ, R, N, JK ; k = 1, 2,...,N , IT

where

IT = 1  if it is required to compute ∂V / ∂r from r

IT = 2  if it is required to compute ∂V / ∂r from uj ; j = 1,2,3,4,5.

T  is a given vector of dimension five such that its components are :

(x1, x2, x3, 0, 0) if  IT = 1

(u1, u2, u3, u4, u5) if  IT = 2.

Computational Sequence

(1) if IT = 2   Go to step 7

(2)  r2
1 = T2

1 + T2
2

(3) r2 = r2
1 + T2

3

(4) Do = T3 / r

(5) Qo = R / r

(6) Go to step 11

(7) Qo = R T5

(8) Do = 2 (T1T3 � T2T4)

(9) c11 = T2
1 � T2

2 � T2
3 + T2

4

(10) c12 = 2 (T1T2 + T3T4)

(11) S ← 0

(12) C ← 0

(13) Ho ← Do

u and u
r

jj 5
1

1 2 3 4= = =ρ ; , , , .
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(14) H1 ← 0.5 Qo (3 Do
2 � 1)

(15) H2 ← H1

(16) For all k = 2(1) N, compute

k1 = k + 1 ; B = HoQo ; G = DoH2 ; A = G � B;

H2 = Qo (A + G � A / k1) ; F = QoH1 � DoH2 ;

Ho ← H1 ; H1 ← H2 ; C ← C + k1JKF ; S ← S + k1JKH2.

(17) If IT = 2   Go to step 22

Computational Algorithm (4)

Purpose: To compute r and r⋅ from uj ; j = 1,2,...,7  and

Input:  µ, uj and u′i ; j = 1(1)7 ; i = 1(1)4
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∂
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Computational Sequence

Numerical Applications

Test Cases

For the purposes of numerical applications of our algorithm, we consider
three fractional orbit cases all with the same initial time to = 0 sec., while the in-
itial values are listed for each case in the first column of Tables 1, 2 and 3 to-
gether with the type of the orbit.

The Adopted Physical Constants

µ = 398600.8 km3 sec�2       ;       R = 6378.135 km

The numerical values of the Earth�s zonal harmonic coefficients JK ; k =
2,3,...,36 are  taken from reference[5].

Checks During Numerical Integration

The accuracy of the computed values during the numerical integration could
be checked by the conditions:
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u2
1 + u2

2 + u2
3 + u2

4 = 1 , (3.14)

ω2 = u2 u′4 + u3 u′1 � u4u′2 � u1 u′3 = 0. (3.15)

TABLE 1. Initial and final states with harmonics up to J36 for the test case No. 1 (Units: to and TF
are in sec., X in km and X

⋅   in km / sec).

Initial           Final          Accuracy checks          

Elliptic orbit Elliptic orbit

to = + 0.0000000000 D + 00 TF = + 0.1800000900 D + 04 Check 1 = 0.1000000000 D + 01

X1 = + 0.6478000000 D + 04 X1 = + 0.1097091933 D + 05 Check 2 = 0.9859992902 D � 21

X2 = + 0.0000000000 D + 00 X2 = + 0.1435479581 D + 04 Check 3 = 0.2629760517 D � 11

X3 = + 0.0000000000 D + 00 X3 = + 0.4304935816 D + 04

X
⋅

1 = + 0.7000000000 D + 01 X
⋅

1 =  � 0.4446857760 D + 00

X
⋅

2 = + 0.1000000000 D + 01 X
⋅

2 =  + 0.5322856247 D + 00

X
⋅

3 = + 0.3000000000 D + 01 X
⋅

3 =  + 0.1595330525 D + 01

TABLE 2. Initial and final states with harmonics up to J36 for the test case No. 2  (Units: to and TF
are in sec., X in km and X

⋅   in km / sec).

Initial           Final          Accuracy checks          

Parabolic orbit Parabolic orbit

to = + 0.0000000000 D + 00 TF = + 0.1946250000 D + 04 Check 1 = 0.1000000000 D + 01

X1 = � 0.9592151798 D + 04 X1 = � 0.1835330831 D + 05 Check 2 = 0.2394687873 D � 20

X2 = + 0.4539210547 D + 04 X2 = + 0.1095613853 D + 05 Check 3 = � 0.304914110 D � 08

X3 = � 0.2198098325 D + 04 X3 = + 0.6018407546 D + 04

X
⋅

1 = � 0.6217477283 D + 01 X
⋅

1 =  � 0.3465737904 D + 01

X
⋅

2 = + 0.4184991210 D + 01 X
⋅

2 =  + 0.2718405654 D + 01

X
⋅

3 = + 0.4170160618 D + 01 X
⋅

3 =  + 0.4060604939 D + 01

In addition to these two general conditions, the present problem provides a
third one which is the constancy of the total energy (since the potential with ax-
ial symmetry is conservative), that is

∆h = h(t) � h(0) = 0 (3.16)

where h(t) and h(0) are the values of the total energy h at any time t and at the
initial epoch t = 0, respectively.
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TABLE 3. Initial and final states with harmonics up to J36 for the test case No. 3  (Units: to and TF
are in sec., X in km and X

⋅   in km / sec).

Initial           Final          Accuracy checks          

Hyperbolic orbit Hyperbolic orbit

to = + 0.0000000000 D + 00 TF = + 0.9753400000 D + 03 Check 1 = + 0.1000000000 D + 01

X1 = � 0.7515331845 D + 03 X1 = � 0.2063161960 D + 04 Check 2 = + 0.2547716287 D � 20

X2 = � 0.1719532694 D + 05 X2 = � 0.9384960103 D + 04 Check 3 = � 0.1671315173 D � 13

X3 = � 0.1922853605 D + 05 X3 = � 0.2434255191 D + 05

X
⋅

1 = � 0.1358441628 D + 01 X
⋅

1 =  � 0.1326442061 D + 01

X
⋅

2 = + 0.7840211728 D + 01 X
⋅

2 =  + 0.8144014726 D + 01

X
⋅

3 =  � 0.5483792681 D + 01 X
⋅

3 =  � 0.4987127484 D + 01

Numerical Results

The equations of the present and previous sections are programmed and ap-
plied with fixed step size, fourth-order Runge-Kutta-Gill method. Conditions
(3.14), (3.15) and (3.16) are used for checking the accuracies of numerical in-
tegration. Although the program is developed to include up to any number of
Earth�s zonal harmonic terms Jn, however, the numerical computations are done
with terms up to J36. The output of the program was arranged for each case
study in the second and third columns of Tables 1, 2 and 3, where CHECK 1, 2,
3 correspond respectively to the conditions (3.14), (3.15) and (3.16).

Efficiency Study

In order to judge the efficiency of the motion prediction algorithm for tra-
jectories of very short flight times, or order 30 minutes (like those cases of the
present paper), the accuracy of its final state prediction should be at least of the
order of few centimeters. As the first step for such efficiency study, we need the
reference final state of the given case. For the three test cases each for the geo-
potential model with zonal harmonic terms up to J36 we produced a reference
state determined by reducing the time step size used in the numerical solution of
the system.

until five decimal places (~ 10�2 meter) stabilized in X at TF, where TF is the
flight time. Let this reference state be XjR (TF), XjE (TF) are the final values as
obtained by the present method, and XjC (TF) are the corresponding final values

˙̇ –X
r

X
V
X

+ µ = ∂
∂3
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as obtained by the solution of the classical equations of motion. Then the ef-
ficiency of a method with final values XjQ (TF) (say) can be measured by the
magnitude of what we call it, the prediction error PE defined as

(3.17)

such that, the smaller the value of PE, the higher the efficiency of the prediction
algorithm will be.

In Tables 4, 5 and 6, the efficiency studies for the test cases are presented. In
the second column of each table, the final state of the case is rewritten for the
purpose of comparison, while the third and fourth columns of the tables give the
value of the prediction error [computed by equation (3.17)] for the motion al-
gorithm of the presented paper and for the solution of classical equations of mo-
tion respectively.

TABLE 4. Efficiency study for the test case No. 1.

XjR (TF) XjE (TF) XjC (TF)

j
1 0.1097091933 D + 05 0.109791933 D + 05 0.10969562853 D + 05
2 0.1435479581 D + 04 0.1435479581 D + 04 0.14354637985 D + 04
3 0.4304935816 D + 04 0.4304935816 D + 04 0.43048886713 D + 04

(PE)E = 0.0 cm      ,      (PE)c = 135150.9 cm

TABLE 5. Efficiency study for the test case No. 2.

XjR (TF) XjE (TF) XjC (TF)

j
1 � 0.1835330831 D + 05 � 0.1835330831 D + 05 � 0.18353271824 D + 05
2 + 0.1095613853 D + 05 + 0.1095613853 D + 05 + 0.10956124599 D + 05
3 + 0.6018407546 D + 04 + 0.6018407546 D + 04 + 0.60184309983 D + 04

(PE)E = 0.0 cm      ,      (PE)c = 4597.1 cm

TABLE 6. Efficiency study for the test case No. 3.

XjR (TF) XjE (TF) XjC (TF)

j
1 � 0.2063161960 D + 04 � 0.2063161960 D + 04 � 0.20631619132 D + 04
2 � 0.9384960103 D + 04 � 0.9384960103 D + 04 � 0.93849603552 D + 04
3 � 0.2434255191 D + 05 � 0.24342551916 D + 05 � 0.24342551705 D + 05

(PE)E = 0.0 cm      ,      (PE)c = 195.3 cm

PE X TF X TF in centimetersjQ jR
j

=











×

=
∑[ ( ) – ( )]   (  )

/

2

1

3
1 2

510



Initial-Value Problem for Artificial Satellites Motion in... 29

It is clear from these tables that, the solution obtained from the classical equa-
tions of motion is too far from the requirement nowadays of centimeter class so-
lutions of very short flight time trajectories. On the other hand, the algorithm of
the present paper is extremely accurate and is within the class of acceptable so-
lution for very short flight time trajectories.

Summary

A motion prediction algorithm using the Eulerian parameters has been de-
veloped for the motion in the Earth�s gravitational field with axial symmetry.
The algorithm is of recursive nature, and moreover could be used for any conic
motion whatever the number of zonal harmonic coefficients may be. Numerical
results proved the very highly efficiency and flexibility of the developed al-
gorithm for the nowadays requirements of centimeter class solutions of very
short flight time trajectories, which are of extreme importance for military pur-
poses.
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