Symmetric Generating Set of the Groups $A_{k n+}$ and $S_{k n+1}$

Ibrahim R. Al-Amri and A.M. Hammas
Dept. of Physics and Mathematics, Faculty of Education, King Abdulaziz University,
Al-Madinah, Al-Munawwarrah, Saudi Arabia

Abstract

In this paper we will show how to generate in general $A_{k n+1}$ and $S_{k n+1}$ - the alternating and the symmetric groups of degrees $k n+1-$ using a copy of S_{n} and an element of order $k+1$ in $A_{k n+1}$ and $S_{k n+1}$ for all positive integers $n \geq 2$ and $k \geq 2$. We will also show how to generate $A_{k n+1}$ and $S_{k n+1}$ symmetrically using n elements each of order $k+1$.

I. Introduction

Hammas ${ }^{[1]}$, showed that $A_{2 n+1}$ can be presented as

$$
G=A_{2 n+1}=\left\langle X, Y, T \mid\langle X, Y\rangle=S_{n}, T^{3}=\left[T, S_{s-1}\right]=1\right\rangle
$$

for all $3 \leq n \leq 11$ where $\left[T, S_{n-1}\right.$] means that T commutes with Y and with $(X Y)^{X^{-(n-3)}}$, the generators of S_{n-1}. The relations of the symmetric group $S_{n}=\langle X, Y\rangle$ of degree n are found in Coxeter and Moser ${ }^{[3]}$. In order to complete the enumeration, we need to add some relations to the presentation that generate $A_{2 n+1}, n \geq 2$. Also in Hammas ${ }^{[1]}$ it has been proved that for all $3 \leq n \leq 11$, the group $A_{2 n+1}$ can be symmetrically generated by n-elements each of order 3 , and of the form T_{0}, T_{1}, \ldots, T_{n-1}, where, $T_{i}=T^{X^{i}}=X^{-i} T X^{i}$ and T, X satisfy the relations of the group $A_{2 n+1}$. The set $\left\{T_{0}, T_{1}, \ldots, T_{n-1}\right\}$ is called the symmetric generating set of $A_{2 n+1}$ (see the definition in section 2).

Hammas et al. ${ }^{[2]}$ have given a permutational generating set that generates $A_{2 n+1}$ for all $n \geq 2$, and satisfies the relations given in the group G above. Also, they have proved that for all $n \geq 2$, the group $A_{2 n+1}$ can be symmetrically generated by n-elements each of order $3^{[2]}$.

In this paper, we give permutations generate $A_{k n+1}$ and $S_{k n+1}$ for all $n \geq 2$ and satisfy the relations given in presentation of $A_{k n+1}$ and $S_{k n+1}$. Further, we prove that $A_{k n+1}$ and $S_{k n+1}: n \geq 2$ can be symmetrically generated by n permutations each of order 3 satisfying our definition in Hammas et al. ${ }^{[2]}$.

The results obtained here generalise the results given Hammas et al. ${ }^{[2]}$ and lead us to formulate a conjecture which generalises the results given in Hammas ${ }^{[1]}$.

II. Symmetric Generating Sets

Let G be a group and $\Gamma=\left\{T_{0}, T_{1}, \ldots, T_{n-1}\right\}$ be a subset of G where, $T_{i}=T^{X^{i}}$ for all $i=0,1, \ldots, n-1$. Let S_{n} a copy of the symmetric group of degree- n be the normalizer in G of the set Γ. We define Γ to be a symmetric generating set of G if and only if $G=\langle\Gamma\rangle$ and S_{n} permutes Γ doubly transitively by conjugation, i.e., Γ is realizable as an inner automorphism.

III. Permutational Generating Set of $\boldsymbol{A}_{\mathbf{k n + 1}}$ and $\boldsymbol{S}_{\mathbf{k n}+1}$

Theorem III.1. $A_{k n+1}$ and $S_{k n+1}$ can be generated using a copy of S_{n} and an element of order $k+1$ in $A_{k n+1}$ and $S_{k n+1}$ for all $n \geq 2$ and all $k \geq 2$.

Proof

Let X, Y and T be the permutations :
$X=(1,2, \ldots, n)(n+1, n+2, \ldots, 2 n) \ldots((k-1) n+1,(k-1) n+2, \ldots, k n)$, $Y=(1,2)(n+1, n+2) \ldots((k-1) n+1,(k-1) n+2)$, and $T=(n, 2, n, 3 n, \ldots, k n, k n+1)$ be three permutations; the first of order n, the second of order 2 and the third of order $k+1$. Let H be the group generated by X and Y. By Coxeter and Moser ${ }^{[3]}$, the group H is the symmetric group S_{n}. Let \bar{G} be the group generated by X, Y and T. Consider the product $T X$. Let $\mathcal{B}=(T X)^{n}$. Let $K=\langle\mathcal{B}, T\rangle$. Since
$\beta=(1, n+1,2 n+1,3 n+1, \ldots, k n+1, n, 2 n, 3 n, \ldots k n, n-1,2 n-1, \ldots k n-1$, $n-2,2 n-2, \ldots, k n-2, \ldots, \ldots, 2, n+2,2 n+2, \ldots,(k-1) n+2)$
then we claim that K is either $A_{k n+1}$ or $S_{k n+1}$. To show this, let θ be the mapping which takes the element in the position i of the permutation B into the element i in the permutation ($1,2, \ldots, k n+1$). Under this mapping θ, the group K will be mapped into the group

$$
\theta(K)=\langle(1,2, \ldots, k n+1),(n-1, n, n+1, \ldots, n+k)\rangle
$$

Now if k is an odd integer then $(n-1, n, n+1, \ldots, n+k)$ is an odd permutation. Hence $\theta(K)$ is the symmetric group $S_{k n+1}$. Since K is a subgroup of \bar{G}, then \bar{G} is the symmetric group $S_{k n+1}$. While if k is an even integer then the permutations $(1,2, \ldots, k n+1)$ and $(n-1, n, n+1, \ldots, n+k)$ are even. Hence $\theta(K)$ is the alternating group $A_{k n+1}$. In this case X, Y and T are all even permutations. Therefore $\overline{\mathrm{G}}$ is $A_{k n+1} . \diamond$.

Conjecture

The above theorem led us to state the following conjecture which generalizes the result proved by Hammas ${ }^{[1]}$

$$
\text { Let } G=\langle X, Y, T|\langle X, Y\rangle=S_{n}, T^{k+1}=\left[T, S_{n-1} 1=\right.
$$

for all $n \geq 2$ and all $k \geq 2$. If k is an even integer when $G \cong S_{k n+1}$.
It is important to notice that the elements X, Y and T described above satisfy the relations of the group G given in the conjecture above. In particular, the elements X, Y generate a copy of S_{n}. The elements Y and T commute for all $n \geq 3$. For all $n \geq 3$, the element T commutes with the group $S_{n-1}=\left\langle Y,(X Y)^{X^{-(n-3)}}\right\rangle$.

IV. Symmetric Permutational Generating Set of $A_{k n+1}$ and $S_{k n+1}$

Theorem IV.1. Let

$X=(1,2, \ldots, n)(n+1, n+2, \ldots, 2 n) \ldots((k-1) n+1,(k-1) n+2, \ldots, k n)$, $Y=(1,2)(n+1, n+2) \ldots((k-1) n+1,(k-1) n+2)$ and $T=(n, 2, n, 3 n, \ldots, k n, k n+1)$ be the permutations described before. Let $\Gamma=\left\{T_{0}, T_{1}, \ldots, T_{n-1}\right\}$ for all $n \geq 2$, where $T_{i}=T^{x^{i}}$. If k is an even integer, then the set Γ generates the alternating group $A_{k n+1}$ symmetrically. If k is an odd integer, then the set Γ generates the symmetric group $S_{k n+1}$ symmetrically.

Proof

Let $T_{0}=(n, 2 n, \ldots, k n, k n+1), T_{1}=T^{X}=(1, n+1, \ldots,(k-1) n+1, k n+$ $1), \ldots, T_{n-1}=T^{x^{n-1}}=(n-1,2 n-1,3 n-1, \ldots, k n-1, k n+1)$. Let $H=\langle\Gamma\rangle$. We claim that $H \cong A_{k n+1}$ or $S_{k n+1}$. To show this, consider the element.

$$
\alpha=\prod_{i=}^{n} T^{X^{i}}
$$

It is not difficult to show that
$\alpha=(1, n+1,2 n+1,3 n+1, \ldots,(k-1) n+1,2, n+2,2 n+2, \ldots,(k-1) n+$ $2, \ldots, n, 2 n, 3 n, \ldots, k n, k n+1)$.
Let $H_{1}=\left\langle\alpha, T_{0}\right\rangle$. We claim that $H_{1} \cong H_{k n+1}$ or $S_{k n+1}$. To prove this, let θ be the mapping which takes the element in the position i of the cycle α into the element i of the cycle ($1,2, \ldots, k n+1$). Under this mapping the group H_{1} will be mapped into the group

$$
\theta\left(H_{1}\right)=\langle(1,2, \ldots, k n+1),(k(n-1)+1, k(n-1)+2, \ldots, k n, k n+1)\rangle
$$

As in the proof of the previous theorem we can conclude that if k is an odd integer then $H \cong H_{1} \cong \theta\left(H_{1}\right) \cong S_{k n+1}$, and if k is an even integer then $H \cong H_{1} \cong \theta\left(H_{1}\right)$ $\cong A_{k n+1} . \diamond$
The set Γ described above satisfies the conditions of the group given in Hammas ${ }^{[1]}$. It is important to note that Γ has to have at least n elements each of order $k+1$ to generate $A_{k n+1}$ or $S_{k n+1}$. The following theorem characterizes all groups found if we remove m elements of the set Γ.
Theorem IV. 2 Let T and X be the permutations which have been described above, where $T^{K+1}=1$. Let $\Gamma=\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ for all $n \geq 2$, where $T_{i}=T^{x^{i}}$. If k is an even integer then if we remove m-elements of the set Γ for all $1 \leq m \leq n-2$ then the resulting set generates $A_{k(n-m)+1}$. If k is an odd integer then if we remove m-elements of the set Γ for all
$1 \leq m \leq n-2$ then the resulting set generates $S_{k(n-m)+}$ If we remove ($n-1$)-elements of the set Γ then the resulting set generates C_{k+1}.

Proof

Using induction on $n-m$, if $n-m=1$ then let $\Gamma_{1}=\left\{T_{1}\right\}$. Since T_{1} is the permutation $(1, n+1, \ldots,(k-1) n+1, k n+1)$ of order $k+1$ then Γ_{1} generates C_{k+1}. Suppose that $1 \leq m \leq n-2$. Assume that the theorem is true for $n-m=j$. i.e., if $\Gamma_{j}=\left\{T_{1}, \ldots, T_{j}\right\}$ then Γ_{j} generates $A_{k(j)+1}$ or $S_{k(j)+1}$ depending on whether k is an even or an odd integer respectively. For $n-m=j+1$, let $\Gamma_{j+1}=\left\{T_{1}, \ldots, T_{j+1}\right\}$. Let $F=\left\{T_{1}, \ldots, T_{j}\right\}$. By this hypothesis, F generates $A_{k(j)+1}$ or $S_{k(j)+1}$. Since
$B=(1, n+1,2 n+1,3 n+1, \ldots,(k-1) n+1,2, n+2,2 n+2, \ldots,(k-1)$ $n+2, \ldots, j, n+j, 2 n+j, \ldots,(k-1) n+j, k n+1) \epsilon\langle F\rangle$,
and since $T_{j+1}=T^{x^{j+1}}=(j+1, n+j+1,2 n+j+1, \ldots,(k-1) n+j+1, k n+1)$ then
$B T_{j+1}=(1, n+1,2 n+1, \ldots,(k-1) n+1,2, n+2,2 n+2, \ldots,(k-1) n+2$, $\ldots, j, n+j, 2 n+j, \ldots,(k-1) n+j, j+1, n+j+1,2 n+j+1, \ldots,(k-1) n+$ $j+1, k n+1) \in\left\langle F, T_{j+1}\right\rangle$.
But $\left\langle F, T_{j+1}\right\rangle \cong A_{k(j)+1}$ or $S_{k(j)+1}$ depending on whether k is an even or an odd integer respectively, and so the theorem is true for all m.

References

[1] Hammas, A.M., Symmetric Presentations of Some Finite Groups, Ph.D. Thesis, University of Birmingham, May (1991).
[2] Hammas, A.M. and Al-Amri, Ibrahim, R., Symmetric Generating Set of the Alternating Groups $A_{2 n+1}$, JKAU: Edu. Sci., 7: 3-7 (1994).
[3] Coxeter, H.S.M. and Moser, W.O.J., Generators and Relations for Discrete Groups, 3rd ed., Springer-Verlag, New York (1972).
[4] Al-Amri, Ibrahim, R., Computational Methods in Permutation Group Theory, Ph.D. Thesis, University of St. Andrews, September (1992).

$$
\text { بجموعــــة المولــــدات المتمـــــاثلة للزمــــر } A_{k n+1} A_{k n+1}
$$

أحمد محمود علي حاص و إيراهيم رشيد هزة العمري
قسم الفيزياء والرياضيات ، كلية التريبة ، جامعة الملك عبد العزيز المدينـة المنــورة ، المملكة العربية السعودية
 بشكل

يثبت أن الزمر من عدد n من العناصر ذات الرتبة k+1 . .

