Symmetric Generating Set of the Groups A_{kn+1} and S_{kn+1}

IBRAHIM R. AL-AMRI and A.M. HAMMAS Dept. of Physics and Mathematics, Faculty of Education, King Abdulaziz University, Al-Madinah, Al-Munawwarrah, Saudi Arabia

ABSTRACT. In this paper we will show how to generate in general A_{kn+1} and S_{kn+1} - the alternating and the symmetric groups of degrees $kn + 1 - using a copy of <math>S_n$ and an element of order k + 1 in A_{kn+1} and S_{kn+1} for all positive integers $n \ge 2$ and $k \ge 2$. We will also show how to generate A_{kn+1} and S_{kn+1} symmetrically using n elements each of order k + 1.

I. Introduction

Hammas^[1], showed that A_{2n+1} can be presented as

$$G = A_{2,n+1} = \langle X, Y, T | \langle X, Y \rangle = S_n, T^3 = [T, S_{n-1}] = 1 \rangle$$

for all $3 \le n \le 11$ where $[T, S_{n-1}]$ means that T commutes with Y and with $(XY)^{X^{-(n-3)}}$, the generators of S_{n-1} . The relations of the symmetric group $S_n = \langle X, Y \rangle$ of degree n are found in Coxeter and Moser^[3]. In order to complete the enumeration, we need to add some relations to the presentation that generate A_{2n+1} , $n \ge 2$. Also in Hammas^[1] it has been proved that for all $3 \le n \le 11$, the group A_{2n+1} can be symmetrically generated by n-elements each of order 3, and of the form $T_0, T_1, \ldots, T_{n-1}$, where, $T_i = T^{X^i} = X^{-i} TX^i$ and T, X satisfy the relations of the group A_{2n+1} (see the definition in section 2).

Hammas *et al.*^[2] have given a permutational generating set that generates A_{2n+1} for all $n \ge 2$, and satisfies the relations given in the group G above. Also, they have proved that for all $n \ge 2$, the group A_{2n+1} can be symmetrically generated by *n*-elements each of order $3^{[2]}$.

In this paper, we give permutations generate A_{kn+1} and S_{kn+1} for all $n \ge 2$ and satisfy the relations given in presentation of A_{kn+1} and S_{kn+1} . Further, we prove that A_{kn+1} and S_{kn+1} : $n \ge 2$ can be symmetrically generated by *n* permutations each of order 3 satisfying our definition in Hammas *et al.*^[2].

The results obtained here generalise the results given Hammas *et al.*^[2] and lead us to formulate a conjecture which generalises the results given in Hammas^[1].

II. Symmetric Generating Sets

Let G be a group and $\Gamma = \{T_0, T_1, \dots, T_{n-1}\}$ be a subset of G where, $T_i = T^{X^i}$ for all $i = 0, 1, \dots, n-1$. Let S_n a copy of the symmetric group of degree-n be the normalizer in G of the set Γ . We define Γ to be a symmetric generating set of G if and only if $G = \langle \Gamma \rangle$ and S_n permutes Γ doubly transitively by conjugation, i.e., Γ is realizable as an inner automorphism.

III. Permutational Generating Set of A_{kn+1} and S_{kn+1}

Theorem III.1. A_{kn+1} and S_{kn+1} can be generated using a copy of S_n and an element of order k + 1 in A_{kn+1} and S_{kn+1} for all $n \ge 2$ and all $k \ge 2$.

Proof

Let X, Y and T be the permutations :

X = (1, 2, ..., n) (n + 1, n + 2, ..., 2n) ... ((k-1)n + 1, (k-1)n + 2, ..., kn), Y = (1, 2) (n + 1, n + 2) ... ((k-1)n + 1, (k-1)n + 2), and T = (n, 2, n, 3n, ..., kn, kn + 1)be three permutations; the first of order n, the second of order 2 and the third of order k + 1. Let H be the group generated by X and Y. By Coxeter and Moser^[3], the group H is the symmetric group S_n. Let \overline{G} be the group generated by X, Y and T. Consider the product TX. Let $\beta = (TX)^n$. Let $K = \langle \beta, T \rangle$. Since

 $B = (1, n + 1, 2n + 1, 3n + 1, \dots, kn + 1, n, 2n, 3n, \dots, kn, n-1, 2n-1, \dots, kn-1, n-2, 2n-2, \dots, kn-2, \dots, 2, n+2, 2n+2, \dots, (k-1)n+2)$

then we claim that K is either A_{kn+1} or S_{kn+1} . To show this, let θ be the mapping which takes the element in the position *i* of the permutation β into the element *i* in the permutation (1, 2, ..., kn + 1). Under this mapping θ , the group K will be mapped into the group

$$\theta(K) = \langle (1, 2, ..., kn + 1), (n-1, n, n+1, ..., n+k) \rangle.$$

Now if k is an odd integer then (n-1, n, n+1, ..., n+k) is an odd permutation. Hence $\theta(K)$ is the symmetric group S_{kn+1} . Since K is a subgroup of \overline{G} , then \overline{G} is the symmetric group S_{kn+1} . While if k is an even integer then the permutations (1, 2, ..., kn+1) and (n-1, n, n+1, ..., n+k) are even. Hence $\theta(K)$ is the alternating group A_{kn+1} . In this case X, Y and T are all even permutations. Therefore \overline{G} is A_{kn+1} .

Conjecture

The above theorem led us to state the following conjecture which generalizes the result proved by Hammas^[1]

Let
$$G = \langle X, Y, T | \langle X, Y \rangle = S_n, T^{n+1} = [T, S_{n-1}] =$$

for all $n \ge 2$ and all $k \ge 2$. If k is an even integer when $G \cong S_{kn+1}$.

It is important to notice that the elements X, Y and T described above satisfy the relations of the group G given in the conjecture above. In particular, the elements X, Y generate a copy of S_n . The elements Y and T commute for all $n \ge 3$. For all $n \ge 3$, the element T commutes with the group $S_{n-1} = \langle Y, (XY)^{X^{-(n-3)}} \rangle$.

IV. Symmetric Permutational Generating Set of A_{kn+1} and S_{kn+1} Theorem IV.1. Let

X = (1, 2, ..., n) (n + 1, n + 2, ..., 2n) ... ((k-1)n + 1, (k-1)n + 2, ..., kn), Y = (1, 2) (n + 1, n + 2) ... ((k-1)n + 1, (k-1)n + 2) and T = (n, 2, n, 3n, ..., kn, kn + 1)be the permutations described before. Let $\Gamma = \{T_0, T_1, ..., T_{n-1}\}$ for all $n \ge 2$, where $T_i = T^{X^i}$. If k is an even integer, then the set Γ generates the alternating group A_{kn+1} symmetrically. If k is an odd integer, then the set Γ generates the symmetric group S_{kn+1} symmetrically.

Proof

Let $T_0 = (n, 2n, ..., kn, kn + 1), T_1 = T^X = (1, n + 1, ..., (k-1)n + 1, kn + 1), ..., T_{n-1} = T^{X^{n-1}} = (n-1, 2n-1, 3n-1, ..., kn-1, kn + 1).$ Let $H = \langle \Gamma \rangle$. We claim that $H \cong A_{kn+1}$ or S_{kn+1} . To show this, consider the element.

$$\alpha = \prod_{i=1}^{n} T^{X}$$

It is not difficult to show that

 $\alpha = (1, n + 1, 2n + 1, 3n + 1, ..., (k-1)n + 1, 2, n + 2, 2n + 2, ..., (k-1)n + 2, ..., n, 2n, 3n, ..., kn, kn + 1).$

Let $H_1 = \langle \alpha, T_0 \rangle$. We claim that $H_1 \cong H_{kn+1}$ or S_{kn+1} . To prove this, let θ be the mapping which takes the element in the position *i* of the cycle α into the element *i* of the cycle (1, 2, ..., kn + 1). Under this mapping the group H_1 will be mapped into the group

$$\theta(H_1) = \langle (1, 2, \dots, kn+1), (k(n-1)+1, k(n-1)+2, \dots, kn, kn+1) \rangle.$$

As in the proof of the previous theorem we can conclude that if k is an odd integer then $H \cong H_1 \cong \theta$ (H_1) $\cong S_{kn+1}$, and if k is an even integer then $H \cong H_1 \cong \theta(H_1)$ $\cong A_{kn+1}$.

The set Γ described above satisfies the conditions of the group given in Hammas^[1]. It is important to note that Γ has to have at least *n* elements each of order k + 1 to generate A_{kn+1} or S_{kn+1} . The following theorem characterizes all groups found if we remove *m*-elements of the set Γ .

Theorem IV.2 Let T and X be the permutations which have been described above, where $T^{K+1} = 1$. Let $\Gamma = \{T_1, T_2, ..., T_n\}$ for all $n \ge 2$, where $T_i = T^{X^i}$. If k is an even integer then if we remove *m*-elements of the set Γ for all $1 \le m \le n-2$ then the resulting set generates $A_{k(n-m)+1}$. If k is an odd integer then if we remove *m*-elements of the set Γ for all

 $1 \le m \le n-2$ then the resulting set generates $S_{k(n-m)+}$ If we remove (n-1) - elements of the set Γ then the resulting set generates C_{k+1} .

Proof

Using induction on n-m, if n-m = 1 then let $\Gamma_1 = \{T_1\}$. Since T_1 is the permutation (1, n + 1, ..., (k-1)n + 1, kn + 1) of order k + 1 then Γ_1 generates C_{k+1} . Suppose that $1 \le m \le n-2$. Assume that the theorem is true for n-m = j. i.e., if $\Gamma_j = \{T_1, ..., T_j\}$ then Γ_j generates $A_{k(j)+1}$ or $S_{k(j)+1}$ depending on whether k is an even or an odd integer respectively. For n-m = j + 1, let $\Gamma_{j+1} = \{T_1, ..., T_{j+1}\}$. Let $F = \{T_1, ..., T_j\}$. By this hypothesis, F generates $A_{k(j)+1}$ or $S_{k(j)+1}$. Since

 $\mathcal{B} = (1, n + 1, 2n + 1, 3n + 1, \dots, (k-1)n + 1, 2, n + 2, 2n + 2, \dots, (k-1) \\ n + 2, \dots, j, n + j, 2n + j, \dots, (k-1)n + j, kn + 1) \in \langle F \rangle ,$

and since $T_{j+1} = T^{x^{j+1}} = (j+1, n+j+1, 2n+j+1, ..., (k-1)n+j+1, kn+1)$ then

 $BT_{j+1} = (1, n+1, 2n+1, \dots, (k-1)n+1, 2, n+2, 2n+2, \dots, (k-1)n+2, \dots, j, n+j, 2n+j, \dots, (k-1)n+j, j+1, n+j+1, 2n+j+1, \dots, (k-1)n+j+1, kn+1) \in \langle F, T_{j+1} \rangle.$

But $\langle F, T_{j+1} \rangle \cong A_{k(j)+1}$ or $S_{k(j)+1}$ depending on whether k is an even or an odd integer respectively, and so the theorem is true for all m.

References

- Hammas, A.M., Symmetric Presentations of Some Finite Groups, Ph.D. Thesis, University of Birmingham, May (1991).
- [2] Hammas, A.M. and Al-Amri, Ibrahim, R., Symmetric Generating Set of the Alternating Groups A_{2n+1}, JKAU: Edu. Sci., 7: 3-7 (1994).
- [3] Coxeter, H.S.M. and Moser, W.O.J., Generators and Relations for Discrete Groups, 3rd ed., Springer-Verlag, New York (1972).
- [4] Al-Amri, Ibrahim, R., Computational Methods in Permutation Group Theory, Ph.D. Thesis, University of St. Andrews, September (1992).

Symmetric Generating Set of the Groups A_{kn+1} and S_{kn}

أحمد محمود علي حماص و إبراهيم رشيد حمزة العمري قسم الفيزياء والرياضيات ، كلية التربية ، جامعة الملك عبد العزيز المدينــة المنــورة ، المملكة العربية السعودية

المستخلص . في هذا البحث نقدم كيف يمكن توليد زمر التناظرات من الدرجة kn+1 بشكل عام باستخدام صورة من زمرة التناظرات "Sوعنصر من الرتبة k+1 في الزمرة _{kn+1} و و الزمرة _{Skn+1} لكل الأعداد الصحيحة الموجبة n>2 و x>2 . كذلك سوف نقدم برهانا يثبت أن الزمر _{kn+1} و _{kn+1} يمكن توليدها باستخدام مجموعة مولدات التهائل التي تتكون من عدد n من العناصر ذات الرتبة k+1