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ABSTRACT. In this article, an automated production system with two unre
liable stages and a buffer is considered where the first stage has two identical
machines in parallel and the second stage has a single machine. A stochastic
model, which consists of a set of differential equations, is developed and
solved by using a systematic matrix approach to determine line efficiency.

1. Introduction

Much interest has be'en shown recently to the study of the effects of machine failures
and storage capacities on the efficiency of automated production systems. Many in
vestigators have considered serial productioQ. lines with finite capacity buffers bet
ween stages and attempted to obtain exact solutions. Exact solutions have been ob
tained for two and three-stage' lines with unreliable machines. Buzacott[I-3], Elsayed
and Turley[4], Gershwin and Berman[5], Okamura and Yamashina[6], Savsar and
Biles[7], Sheskin(8], Soyster and· Toftt9l , Wijngaard[IOl, and Malathronas etalJIIl have
considered two-stage serial production lines with intermediate buffers and obtained
analytical solutions under different assumptions. Gershwin and Schickl12] obtained
exact solutions for three-stage lines. They also presented a comprehensive li~erature

review on the subject. Ignall and Silver[13] obtained approxim'ate solutions for a two
stage line with N machines in each stage. Mitral14] developed analytical models for
two-stage fluid flow lines. Several other related mode~s are given in the ref
erences[15-20] .
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All of the above mentioned models, with the exception of Ignall and Silverl13] and
Mitra[141, assume a single machine in each stage with a finite buffer between stages.
Tbis paper presents an analytical solution for a production system in which the out
put of two parallel machines flows into a third machine through a finite capacity buf
fer. Figure 1 illustrates the production system considered here. It is not an assembly
system, but a serial production line with merge configuration. Since many real life
production systems are of this nature, the model presented here may find useful ap
plications. In particular, the model is applicable to computer controlled manufactur
ing systems with automated handling equipment, robots, and buffers. The decision
of how to allocate the buffer to improve the production rate is of practical impor
tance. The need for buffer storage for the design of computer systems is also essen
tial; for example, a buffer storage is required for: (i) The storage of information prior
to output and followig input from auxiliary storage or input/output devices, (ii) The
storage of data and messages communicated between active tasks, (iii) The storage
of messages arriving from or being transmitted to remote terminals such as in a time
sharing system[4].
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FIG. 1. A two-stage production line with ·merge configuration.

2. System Operation and Assumptions

The production system under consideration is assumed to have the following oper
ation characteristics.

1. Machines Ml and M2, in the first stage, are identical and have the same failure,
repair, and production rates denoted as A1, ILl and q L respectively.

2. Machine M3, in the second stage, has a failure rate of Az' repair rate of J.Lz' and
a production rate of qz which is assumed as qz = 2Ql'

3. The buffer has a finite capacity for z units .
.4. There is one repairman for each stage.
5. Machine failures and repairs are random and are .exponentially distributed.



Modeling ofa Two-Stage ... 69

Mean values or rates for these random variables can be determined on the basis of
statistical investigation. In almost all of the previous studies given in the references,
exponential distribution has been used to model equipment failures and repairs in
production lines. This is mainly due to the fact that this distribution can actually
model most of the real life situations and is easy to work with.

6. Failure rate of machine M3 reduces to '\2 = '\2/2 when its operation rate is re
duced to ql from 2ql' i.e., failures are operation dependent.

7. The system operates until a machine fails. If Ml (or M2) fails, the operation
continues until one of the following events occurs: i) The buffer level is reduced to
zero by machine M3; ii) Machine M3 fails; or iii) machine M2 (or Ml) fails. If the buf
fer level reduces to zero before the repair of failed machine is completed, the second
stage (M3) slows down and operates at rate ql instead of its normal rate q2' If both
machines, Ml and M2 fail, the second stage continues operation until the buffer is
empty, at which time, M3 is forced down due to unavailability of-incoming parts. The
failure of M3 will force Ml and/or M2 down, i.e., blocked, when the buffer reaches
its maximum level z. In any case, a forced down machine will not fail.

The following notations are used to describe the state of production system with
above characteristics and operation policy.

State of the system at time t with buffer size x, t > 0, °~ x ~ z, and i, j
machines operating at the first and second stage respectively (i == 0, 1,
2 and} == 0,1).
Buffer size, 0 ~ x ~ z.
Maximum buffer capacity.
Probability distribution function of state Si;x(t, x) with i == 0, 1,2; j == 0, 1;
o< x < z, (x variable).
Probability of system state Sijx with x constant at either x == 0, or x == z;
i == 0,1, 2;} = 0,1.

For those states in which buffer level varies, i.e., 0 < x < z, the system changes its
state with respect to buffer level x as well as the time t. There are six such states,
namely; Soox(t, x), SOlx(t, x), Sllx(t, x), S21x(t, x), S20x(t, x), Slox(t, x). For those states
in which buffer is either empty or full, the system changes its state with respect to
time t only. There are also six such states and they are SOlO(t, 0), SIIO(t, 0), S210(t, 0),
Sloz(t, z), S2oz(t, z), S21z(t, z). Note that the probability of two machines failing at the
same time, while the buffer is full or empty, is assumed to be zero since such an event
has an infinitely small probability.

The marginal probabilities for the first six states are given by

i == 0,1,2
j = 0,1
o <x<z
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3. The Stochatic Model

Using the notation above, the functioning of the production system under consid
eration can be described by means of the transition flow diagram given in Fig. 2,
where the dashed lines indicate boundry state transitions and dark solid lines indicate
the transitions that cause boundry conditions.

For notational convenience, let us use hjx to denote hjx(t, x). From the transition
flow diagram, given in Fig. 2, it is possible to obtain a set of differential equations
that govern the production system described above. There are twelve state equa
tions, (1) and (12), corresponding to the twelve system states, as given below.

FIG. 2. Probability transition flow diagram.
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aflOx + ql aflox = ILl foox + A2 fl1x - (ILl + 1L2 + AI)flOx + 2A I f20xat ax
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~~OX + 2ql ~~X =A2 f 21x + ILl f lOx - (IL2 + 211. 1) f 20x

iJp;1O = - ILl POlO + AI PI10 + q2 folx(O)

~~10 = ILl POlO - (AI + ILl + A;) PliO + 211. 1 P210 + q Jllx(O)

~~OZ = - (p.1 + IL2) Pl0z + ql f lO/ Z )

ap20z ~ 2 f ()-at = J..Ll P10z - J..L2 P20z + 1\2 P21z + ql 20x Z

iJp210
at = J..L1 P1l0 - (2\ 1 + A2) P210

ap21z ("\)-at = J..L2 P20z - ~1 + A2 P21z
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(6)

(7)

(8)

(9)

(10)

( 11)

(12)

The boundry conditions are caused by the flows from states SIlO' S210' SlOz' and S21z
to the states S lOx' S20x' Sllx and Sllx respectively. These conditions are stated as fol
lows

A~ PllO q1 f 10x(0) (13)

A2 P210 2ql f20x(0) (14)

J..L2 P10z = ql fllx(Z) (15)

2A1 P21z = ql fllx(z) (16)

Equations (1) to (6), which are decoupled from equations (7) to (12), can be rep-
resented in matrix notations as follows

[F]t + [qI] [F]x [A] [F] (17)

F1 F1
. a

, [F]x =~where [ F] =--
, t at ax

F2 F2

F1 foox(t, x) f01x(t, x)
fllx(t, x)

[F] , [F1] , [F2]
f 10x(t, x)

F2 f21x(t, x) f20x(t, x)
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,
I

00: 0 0 0 0
00: 000 0---- ------~- --- --- -- - -- ---
o 0 : - q2 0 0 0
o 0: 0 - ql 0 0
o 0; 0 0 ql 0
o 0 i 0 0 0 2qj

[A] =

I ~ .

- (ILl + IL2) 0 : A2 0 AI ' 0
o - (2A I + A2) ! 0 ILl 0 ~

- - - - - - - - - - - - - - - - - - 1 -- - - - - - - - -"- - - - - - - - - - - - - - - - - - - - - - - - - -
P-2 0 I - (ILl + A2) Al 0 0
~ 2A I ~ P,I - (P,I + Al +A2) P,2 0
P,1 0 : 0 A2 - (P,J + ILz + AI) 2A I
o A2 : 0 0 P,I - (~ +2 AI)

I

At steady state, the partial derivatives with respect to time t approach zero, i.e.,
[F]t = 0, and [Fj ] & [F2 ] are now functions of x only. The new system of differential
equations is written in matrix notations as follows

[A}] [F1 ] + [A 2 ] [F2 ] = 0

[A 3] [F1l + [A4] [F2] = [qOl] [F2]x

Substituting [F}] from (18) into (19), the following equation set is obtained:

[F2 ] = [a] [F2 ]

where, la] = [qOl]-l {[A4] - [A3] [Aj]-l [A 21}

(18)

(19)

(20)

Equation set (20), which constitutes a system of homogeneous differential equa
tions, has the following general solution(21].

(21)

[S] is a 4 x 4 matrix containing the eigenvectors of matrix [n], and [ekx ] is a 4 x 4
diagonal matrix with ekjx in the i th diagonal; where k j is the i th eigenvalue of [n].

[C] = (cl' c2 , c3 , C4)T, constant coefficients to be determined by the initial conditions.

By substituting [F2 ] from equation set (21) into equation set (18), [F1] is determined
as follows

(22)

Now, equations (7) to (12), which constitute a linear system, can be represented as
'follows

(23)
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where,
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. a
[P]t = ai [P] , [P] =

POIO(t)
Puo(t)

PlOz(t}
pw:(l)

P2W(t)

, [P4] = P2lz(i)

[B) =

I
- J-L. A. 0 O! 0 0
~, - (AI + J-L. + Ai) 0 0 I 2AI 0
o 0 - (J-L, + 1L2) 0 ! 0 0
o 0 . J.I.. - iLl : 0 A2-- ------------ --------- --- ---- ---- ----. -----1-- --------- - -- - ---- - -- --o J.I.. 0 O' - (2A. + A2) 0
o 0 0 ILl 0 - (2A. + A2)

.
q2 0 0 0 t 0 0 fOlx(O),

t

0 q. 0 0 t 0 0 fllx(O),,

=I~~-·l-·-~l' Fo) =

0 0 ql 0 I 0 0 flOx(z)

1·1~[qll] =
,
t

0 0 0 2ql I 0 0 f20x(Z),.------- ----- -- --1-- .. -- ---_
0 0 0 0 t 0 0 0I

I

0 0 0 0 I 0 0 0I

For the steady state solution, [P], = 0, and therefore

[ B1] [P3] + [B2] [P4] + [q02] [F01] = 0 and [B3] [ p3] + [B4] [P4] = 0
which are solved to obtained [P3] and [P4 ] as

[P3 ] [D] [C]

[P4 ] [H] [C]

where, [D] - {[ B1 ] - [ B2] [B4 ] - 1 [B3] }- 1 [q02] [R]

and [H] - [84]-1 [B3 ] [D], where

5 11 5 12 5 13 5 14

[R] 5 21 522 5 23 5 24
k 1z k2z k3z k4z

531e 532e 5 33e 5 34e
k)z A2z A3z "4=541e S42e 543e S44e

(24)

(25)

5 ij are the elements of matrix [S].

Equations (21), (22), (24) and (25) give the complete solution for the state prob
abilities if the constant coefficients, [C], are determined. In order to determine [C],
boundary conditions, the normalizing condition, and some matrix manipulations are
needed. The procedure for obtaining Cis p.resented in the appendix.

The constant coefficients, [C] are substituted into equation ·sets (21), (22), (24),
and (25) to obtain [F1], [F2 ] [P3 ] and [P4 ]. [P2 ] and [ Pi] are obtained by integrating
[ F2 ] and [F1 ] respectively. The results are given in the appendix by equation sets
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(AS) and (A6). [PI ], [P2]' [P3] and [" P4] are the steady state probabilities for twelve
states of the system as described before. Combining all these into a single vector Ps'

the steady state probability vector can be written as follows

These probabilities can be used to study the steady state behaviour of the line.

In the model presented here, it is assumed that 2ql = q2' i.e., the system is ba
lanced. For 2ql ¥= q2' a state transition would occur from S21x to S21z if 2q 1 > q2' and a
transition would occur from S21x to S210 if 2ql < q2' Each case must be treated sepa
rately by changing the differential equation given by (2) and adding an appropriate
boundary condition as follows

~f21x + aq ~q f.21X (2,\ A ) f + f fat ax - 1 + 2 21x ILl lIx + 1i2 20x

2A1 P21z

A2 P210

where aq

~q'f21z

- aq f21z

2ql - q2

for 2ql > q2

for 2ql < q2

4. Production System Efficiency

One can view the system efficiency, £, as the proportion of time that the last stage
is in operation. In this model however, there are two possible production rates for
the last stage, namely normal rate q2 and reduced rate q l'

Proportion of time that the last stage is producing parts at its full rate q2 is given by
2

£1 =. I Pilx + P210 + P21z
i = 0

and the proportion of time that the last stage is producing parts at the reduced rate,
q l' is given by £2 = PlIO

where Pijx are the state probabilities as defined before,

Line efficiency is not merely the sum of £1 and £2' The actual production rate, Be
must be considered in calculating line efficiency.

·Be = q2£1 + ql£2

Thus the actual line efficiency £ = Belq2'

Efficiency of the first stage in the line is calculated as follows,

Let a 1 = P21x + P210 + P20x' proportion of time the first stage is producing at rate
2Ql' a2 = Puo + Pllx = PI0x' proportion of time the first stage is producing at rate ql'

The efficiency of the first stage is thus a 1 + a2/2. Efficiency of the second stage,
which produces the final product, is considered as the system efficiency as calculated
above. .
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s. Computational Results

The procedure for computing the steady state probabilities presented above was
programmed on a VAX Mainframe Computer with the IMSL routines used for mat
rix operations. Several runs were made to determine the production line efficiency
under different cases. The computation time was very small and did not require a
particular attention.

The results of several runs made for four different cases are presented in Fig. 3-6.
In case 1, the failure rates of machines, A1 and A2, were equal at AJ = A2= 0.4 failures/
unit time. In case 2, Al > A2at Al = 0.4 and A2 = 0.2; in case 3, A1 < A2at AI = 0.2 and
A2 = 0.4; and in case 4, Al =. A2 = 0.2 failures/time unit. In all four cases, the repair
rates IJ.-l and IJ.-2 were changed from 2 to 4 as shown in the figures. The productipn
rates of the machine in the first stage were q1 = 5 units/hour while the production rate
in the second stage was q2 = 10 units/hour. Buffer capacity was changed from 0 to 30
units. In each case, the line efficiency was calculated using the equation given for £

above-.
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FIG. 3. Line efficiency for case 1 (AI = 0.4, A2 = 0.4).

The results indicated that the buffer capacity had significant effect on increasing
the line efficiency for up to approximately z = 10 uni~s in almost all cases. Thereafter,
the effect was not as high. For fixed failure rates, as the repair rate was increased, the
line efficiency also increased significantly for all buffer capacities. The main reason
for thi~ is obviously due to the fact that as the repair rate is increased, the equipment
down time is reduced and thus the line efficiency is increased. However, because of
unavoidable random failures, which depend on machine failure rates, the line effi
ciency could only be increased up to a certain level with additional buffer capacity.
Thereafter, increasing buffer capacity would not increase the line efficiency signific
antly.
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FIG. 5. Line efficiency for case 3 (AI = 0.2, A2 = 0.4).

6. Conclusion

In this paper, methodology has been developed to obtain the steady state line effi
ciency for a production line consisting of two stages with a merge configuration and a
finite intermediate buffer.

The results and the model presented here signify that a line should be designed
after some investigation of the effects of buffer capacity, along with failure/repair
profiles, on the line efficiency. Such analysis can help the design engineers and oper-



Modeling ofa Two-Stage... 77

ation managers to assess and to improve the efficiency of a production line under
consideration.
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FIG. 6. Line effi~iency for case 4 (AI = 0.2, A2 = 0.2).

The model presented here gives exact solutions to the extended buffer storage
problem considered in the literature. One of the main features of this model is that
the exact solution is not restricted by the buffer capacity, z. In most of the previous
models however, the state space depends on the buffer size and thus the problems
could only be solved for up to a certain buffer size, z. Furthermore, the previous
models give only approximate solutions, particularly for the production lines with
merge configuration. Here, an exact solution is obtained based on a systematic mat
rix approach that lends itself to easy computation. Therefore, it is possible to extend
the m'odel presented here further to obtain exact solutions for a general two-stage
line with N machines in each stage and for the same line configuration with a single
repair crew for the whole line. Work is currently in progress for these extensions.
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Appendix

Determination of Constant Coefficients, [C]

The constant coefficients, which are needed to solve the differential equations given by equation sets
(21), (22), (24) and (25), are obtained in the following steps.

Step 1

From the boundary conditions given by equations (13) - (15), the following system of equations is
formed. The last boundary condition, equation (16), is not needed since it is redundant.

(PllO' P21O' p IOz) r = [4>] [C] (A1)

where
s31 s32 S33 S34

A~ A~ A~ A~

[4> ] ql'
2S41 2S42 2s43 2s

44

A2 A2 A2 ~
k1z k

2
z k3z k4zS21e s22e s23e S24e

1L2 I-t2 1L2 1L2
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and [ C) is the vector of constant coefficients as defined before.

Step 2

79

From equations (24) and (25), PlIO' P2IIl' and PIO, are extracted and a new system of equations is con
structed as follows

PlIO d21 d22 d2J d24

c i

P210 h ll h l2 h lJ h l4
c2 [V] [C!

PIO, dJ, d}2 dJ3 dJ4
cJ
c4

(A2)

where di, and hi; are the elements of matrices D and H respectively.

StepJ

After equating the equations (AI) and (A2). the following is obtained.

[Yl [C] = [0]

where [Y) = [<P)-[ V) and (0) is a 3 x I zero vector.

(A3)

Equation set (A3) gives the first three equations to determine the four constant coefficients, [C]. The
fourth equation is obtained from the normalizing condition as given in the following step.

Step 4

The normalizing condition, which states that the sum ofstate probabilities must equal one, is used as the
fourth equation in the system given by equation set (A3). This condition can be written and simplied as fol
lows

~ ~ Pijx + ~ PilO + PIO, + P20z + P21,

i = 0 j.z 0 i::: 0

where Pijx

thus,

~ ~ J~ fijx(X) dx + ~ PiJO + PIO, + P20z + P21, = I (A4)
i "" 0 J =0 ; = 0

In order to obtain the above equation. it is necessary to integrate equation sets (21) and (22).

Integration of equation set (22) gives the following.

[P2 ) = [1/1;J [C)

where. [1/1;) = [S) [A)

(AS)

where [A) is a 4 x 4 diagonal matrix with (ii' - 1)/k; in the i th diagonal, and integration of equation set
(22) results in the following.

[PI) = [1\1;) [C)

where, [1/1;] = - [Alr l [A 2 l [S) [A]

(A6)

Finally, sum of the rows of matrices, [D J, 1H], 11/1; 1and [1/1' 2Jare equated to 1 to obtain equation (A4).
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StepS

Equation (A4) is appended to the set (A3) as the fourth equation and a new system of four equations in
four unknowns, [C], is obtained.

[Y'] [el = [e]

where. [e) = (0 0 0 1)1' and [Y'] is [Y] with equation (A4) appended.

Step 6

The set of equations given in (A7) is solved to obtained the unknown constant coefficients [C].

[ C) = (y' ]-1 [e]

(A7)



Modeling ofa Two-Stage...

)~.&'...l:S'~

:..,....... .:.ill\ ~~ , .......J.:J.\~ , ~~\ .......J.:J.\~

. ~~~\ ~.rJ\ ~\ - ~~)\

c:: .)L.yf .::.\;:;1 .b:. .J\j~ k JyrJf'~) ~IJ' , JIAlI \..Lo.'; .~\
~ ~~\ ul.::5UI tJ.A ~l tJ.A ~~ JJ)/\ U>-y-ll . (jJ):- !Jb (jf )~I

~~ ~\p (~~ ~# ~..liJ . o..L>IJ 4~ tJ.A ~~ ~l:J1 U»IJ , ~j!J.:J1

O"W --4~ lo..':.Jl~..bJ1 \I~~ J>. ~ ..liJ (, WLi:J1 lo..":.J~~WI tJ.A 4.s,~ tJ.A .

. .k:ll




