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Abstract. The modeling of a non-stationary process is a problem of
great interest and has many applications in diverse fields in signa
processing. In this paper, an algorithm for estimating the shift-
variant (SV) parameters of a non-stationary process, using
orthogonal projection, is proposed. These parameters can be used
for estimating the evolutionary spectrum (ES), a time-frequency
distribution, of a non-stationary process. The ES is then estimated
with an order based on the dimensionality of the expanding
orthogonal polynomials (OPs). In the proposed method the process
is decomposed to its basic elements by projecting it, recursively,
onto elementary OPs. Simulations are presented when the process
has either single or multiple SV parameters. We have also shown
that if the output of the SV system is corrupted by stationary/non-
stationary noise with symmetric distribution, the noise can be
removed using the evolutionary bispectrum (EB), and smulation is
given to show the powerful of the EB.

Keywords: Non-Stationary Process, Shift-Variant (SV) paranges Multi-
component Sgnd Andysis Orthogond Pdynomid (OP), Time-
Frequency Didribution (TFD), Evdutionary Spedrum (ES),
Evalutionary Bigpectrum (EB).

1. Introduction

The modeling of a non-stationary process and the estimation of its Time-
Frequency Distribution (TFD) are problems of great interest in diverse fieldsin
signal processing and have many applications in speech and image processing,
geophysics, bio-statistical signal processing, radar, medicine, and seismology . For

33


mailto:shoshan@myway.com

Abdullah Al-Shoshan 34

each application, the modeling results in a set of mathematical equations, which can
be used to understand the behavior of the process. When the process is non-
stationary, neither the classical power spectrum nor the bi-spectrum can handle
the modeling problem since they do not reflect the time variation of the process
characteristics . An important issue in the modeling of a nonstationary process
is the knowledge of the degree of the process nonstationarity . In this paper,
we will show that this can be reflected by the expansion order of the SV
parameters embedded in the process. Hence, depending on the expansion order,
the time-frequency (TF) kerndl of the ES can be estimated. This method is
proposed for estimating the order of expansion that will be used to give the
minimum order needed for estimating the SV, and accordingly the optimum TF
kernel, and thus the ES of the energy of the non-stationary process over time. In
the proposed method the process is decomposed by its basic eements by
projecting it, recursively, onto its e ementary OPs.

In previous works, experimental data and functions are represented or
approximated by linear combinations of some predefined basis functions, which
are usually of polynomial forms, bounded and closed under translation and
scaling *%. For these polynomials to exactly be able to represent a given data
sequence, they must be able to span the whole space of the data sequence Y.
In the expansion approach, a set of OPs such as Hahn, Legendre, Laguerre,
Jacobi, or Hermite polynomials can be used. However we need to know or
estimate the number of OPs to be used in the fitting problem "**¥ and any
time-frequency estimator, like evolutionary periodogram (EP) ™, short-time
Fourier transform (STFT) and modified group delay function (MGDF) ™,
multi-window Gabor expansion % multitaper marginal time-frequency
distributions ™, Hartley S-transform ™, or maximum entropy (ME) * can be
used. Mathematical expressions ducidating the analogy between the wavelets
based spectral representation and the traditional one involving trigonometric
functions are derived in [**. In this paper, the Legendre OPs are used and the
EP, an estimator of the evolutionary spectrum ¥, is applied for estimating the
ES of the process. The formal derivation of the ES is explained in Section 1.1
and the derivation of the EB is discussed in Section 1.2.

1.1 Evolutionary Spectrum

According to the Wold-Cramer representation, a non-stationary process,
x(n), admits a representation of the form

x(n) = pc‘)A(n, w)e""dZ (w)

where A(n,w) is aslowly varying function of time. Define ¥
H (n,w) = A(n,w)dZ(w)
then the ES of x(n) is given by
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S.(n,w) = E{|H(n,w) [}
Consider that x(n) can be modeled at a frequency of interest w, as
X(n) = x(n)+y, (0

A, wy)e""dZ (wy) + y,, (n) &)

= H(nw)e™" +y, (n)

where Xo(n) is the process component at the desired frequency w, and Yu (n) is

a zero-mean modeling error including other components of x(n) at the
frequency of interest. The ES is then obtained for finite length of signals,

{x(N]OEN£E N}, by assuming that H(n,w,) can be expressed in time as
expansion of OP functions, {b,(N) [LEMEM,0En£ N - 1} sothat

H(nwy) = A a,b,,(n) =b(na

m=1
where a=[a,,a,,...,a, ] is a vector of random expansion coefficients and

b(n) =[b,(n),b,(n),...,b,, (N)] is a vector of the OP functions at time n,

where t stands for matrix transpose. After manipulating the above equations we
get the EP estimator of the ES expressed as 1™/

éEP(n,w):%H-](n,w) FOENEN-1
where H (n,w) isan estimate of the TF kernel and can be estimated as follows:

~ N-l .
H(n,w) = g w, (K)x(k)e ™ )
k=0
which uses a window that varies with time and constructed from a combination
of OPs such that

w,(K) = A b; (Mb, () &

i=1
The variation of w, (k) depends on the value of M, which is the order of

the OP set used. Although the parameter M plays an essential role in estimating
the EP, no way so far has been proposed for finding the optimum value of M
(2024 Actually, M is a process-dependent parameter, which is connected directly
to the degree of nonstationarity of the process; therefore, this problem will be
investigated throughout this paper. When x(n) is stationary, then the optimum
value of M is one. However, when x(n) deviates from stationarity, M should be
increased accordingly, depending on how far x(n) is from stationarity. Some
simulation for modeling a non-stationary process is presented in Section 2 when
the process has either single or multiple SV parameters.
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1.2 Evolutionary Bispectrum

When the additive noise h(n) shown in Fig. 1 is non-stationary, the
traditional stationary techniques will not be able to remove this type of noise.
However it will simply reduce the effect of non-stationary noise with symmetric
probability density like Gaussian, Laplace, uniform, and Bernouli-Gaussian. To
remove these types of noise, we propose using the evolutionary bispectrum
(EB) introduced by Priestley ¥,

" (n)
LTI
x(n) »(n) 2(n)
G(w) (+)

Fig. 1. A noisy output of an LTI system.

The EB is defined as follows 9. The third-order moment of x(n) is given
by
R(n,m,,m,) = E{x(n)x(n+m)x(n+m,)}
which, by using the Wold-Cramer representation, becomes
PP
R(n,m,m,) = OpOpOle'P' E{dZ(w,)dZ(w,)dZ(w,)}
where:
Hl = Hx(niwl)Hx(n+ rr]’l’WZ)Hx(n+m2’W3)1
b = o (WoMFWIM,) jn(wg+ws+w,)
and
i1S.(w,w,)dwdw, ,w, +w,+w,=0
E{AZ () AZ(w ) AZ (i)} = | v M W
i 0 W, W, +w, 1 0
i.e, it vanishes except along the plane wi+w,+w;=0, where S((w,,w,) is the
bispectrum of a stationary white noise, e(n), then we have that

R(n,m,m,) = c‘;pc‘;pH ”S, (wl,wz)eJ (wom- (w+w,)m,) dw;, dw,
where:
Hz = Hx(niwl)Hx(n+rr]l’WZ)Hx(n+m2’_ W, - Wz)
and setting my=m,=0, we get

RMOO) = E(x(M}=QQS.0nw,w)dwdw, (4
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therefore, the EB of x(n) is defined as

S, (nw,wp) = H (nw)H,(nw)H, (- w; - W) S,(w, W) (5)
Assuming that e(n) is a zero-mean non-Gaussian white noise with
E{ e(n)e(n+m) (n+Kk)} =d(m,k), then S(w1,w,)=1 and therefore Eqg. (5) becomes

Sx(n,wl,wz) = Hx(niwl)Hx(n’WZ)Hx(n’- W, - Wz) (6)
When e(n) is zero-mean Gaussian, then S(wi,w;)=0 and accordingly
Sd{n,wy,w,)=0. Therefore, the EB of a zero-mean non-stationary Gaussian
process is identically zero. If the system h,(n,m) is not time varying, then
Hy(n,w) will aso be time-invariant, therefore, the EB in this case will reduce to
SX(W]_,WZ) = Hx(Wl)Hx(Wz)Hx(' W, - Wz) (7)
which has a similar interpretation to that of the conventional bispectrum of a
stationary process, namely that it is the triple product of the Hy(n,w) at
frequencies w1, w,, and(-w, - W,). Let y(n) be a zero-mean, non-Gaussian
process corrupted by an independent, identically distributed (i.i.d.) zero-mean,
Gaussian noise, h(n), such that

z(n) = y(n) +h(n) ®)
where: y(n) and h(n) are independent, then the third order moment of z(n) is
E, =E, +E, ©)

where: E{.} stands for the expected value, E~E{z(n)z(n+m)z(n+m,)},
E~E{y(n)y(n+my)y(n+m)}, and E.=E{x(n)x(n+my)x(n+m)}. Since y(n) has a
zero-mean value, its first, second, and third order time-varying cumulants
(TVCs) reduce to its first, second, and third order time-varying moments,
respectively, so

c’(n,m,m,) = E{y(n)y(n+m)y(n+m,)}
therefore, the third-order TVC of z(n) becomes

c’(n,m,m,) =c¢’(n,m, m,)+c'(n,m,m,) (10)
and

E{z(n)’} = E{y(n)’} + E{h(n)’} (11)

but since h(n) is a zero-mean, Gaussian noise, then E{h(n)®}=0 and
S (n,w,w,) =0, so

E{z(n)’} = E{ y(n)°} (12)

and hence
S,(n,w,w,) = S, (n, W, W,) (13)
which indicates that the additive Gaussian noise does not affect the third-order
TVC or the EB of y(n). We will show later an example that the additive i.i.d.
zero-mean non-stationary Gaussian noise can be removed using the EB. In
Section 2, the analysis of a process with a single component is presented. Also,
a generalized form for estimating the order of nonstationarity process with
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multiple SV parameters is presented in this section. Some simulations for both
cases and for using the EB are given in Section 3. Section 4 concludes the

paper.

2. Analysis of a Signal with a Singleand Multiple SV Parameters
2.1 Analysis of a Signal with a Single SV Parameter

Consider a linear-phase process x(n) with only one SV parameter A(n) at
W=Wp such that

x(n) = A(n)e’"o" (14
where A(n) can be expanded using M OPs set { bi(n)} such that
An) =3 ab,(n) (15)

i=1
where the set {a} are the expansion coefficients of A(n), and My is the

expansion order. Demodulating x(n) by multiplying it by e il will lead to

5,(n) = A(me o™ 6" (19
where W,, if unknown, is estimated from the conventional spectrum of the
process and the difference between wy and W, is close to zero when the spectral

estimator is good enough. Assuming that the set of OPs {b;(n)} are known and
using their orthogonality property, then, using the inner product associated with
them, we get

D(K) = & b, (), (n) = 2 b, (MA)

n=0 n=0

" 17)
_a° '\clilb ()b (n) _iak kEM,
aaanmniv=lo k>,
where a,=0 for k >Mg and we have used the property of orthogonality
N-1
a by (mb;(n) =d(k- ) (18)

n=0

Therefore, if weincrease k until we reach D(k)=0 we will get the value of M as
the supremum of k. Hence if we define a set K={k | D(k)* O}, the minimum

expansion order of the SV parameter A(n) is defined as M ,=supy(K). After
estimating Mo, one then estimates the ES of x(n) using an expansion order M
equalsto M, .
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2.2 Analysis of a Signal with Multiple SV Parameters

Assuming that the process under consideration has more than one SV
parameter, then using the sinusoidal representation of a SV spectra process, x(n)
can be represented as

X(n) = 3 A (""" (19
k=0

where: R is the number of sinusoidals in x(n), and Ac(n), the SV parameter of
the k" sinusoidal, is represented as

My
A(n)=3aa.b,(n) 0EKER-1 (20)

i=1
where: {a} are the compoasition coefficients of Ac(n), {bi(n)} is a set of OPs,
and My is the number of coefficients used for expanding A(n). To resolve these

SV parameters, we demodulate x(n) by e w1 to get the sub-process

x.(n) =31Ak(n)ej‘wk'wr)n _ A(n)+gl A((n)ej(wk-wr)n

ktr
and then passing x(n) through a low pass filter {g;(n)} whose bandwidth is
larger than the bandwidth of A,(n) and assuming a non-overlapping case, we
get

(21)

%.(n) = A (M) = qa,b,(n) (22)

i=1
and decomposing X (n) using the OP set {bi(n)}, as shown in Fig. 2, we get
from the inner product

N-1 N-1
C.(K)= @ by(MX () = @ by (MA (n)
n=0 n=0
T &
=a aa;b,(nb;(n) =a,[u(k-1)- uk- M, -1)]
n=0i=1
where: u(k) is the discrete-time unit-step function. Since a=0 for k>M,,
C/(K)=0 for k>M, and r>R-1. Therefore, the decomposition order k should be

increased until
C (k)=C (k) =0
where:
Krex = SUP{K}
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Fig. 2. Multi-SV Par ameter s decompaosition.

Picking up the least upper bound of the estimated M's, i.e,
M =max{M,,M,,...,M_ ,}, to bethe order of expansion of the EP estimator

over the whole TF domain of the ES which implies that a,=0 for k>M,. Another
way of estimating the ES is to use different values of M for different ranges of
frequencies according to the different values of the estimated M 's, i.e., dividing
the ES into a couple of bands each with different values of expansion order M.
Two difficulties with this algorithm are: 1): the need to know the frequency of
the sinusoidal components of x(n), 2): since in practice we would not know the
original polynomials, the value of M depends on the polynomials used to
represent A(n). The first problem can be remedied if the phase of each
component is linear. When this is the case, the frequency of each sinusoidal can
be estimated from the frequency spectrum of the process. For the second
problem, one would expect different values for different sets of polynomials.
The above algorithm is illustrated by means of some examples in the following
section.
3. Simulations

3.1 Single SV Parameter Examples

Sequences such as (14) may represent amplitude-modulated harmonics
such as those arising in radar, sonar, and communication systems; an example
occurring in active sonar systems is found in Ref. [8]. Assuming we have the
non-stationary process defined as in Eq. (14) with we=0.1p radians and the SV

parameter A(n) is expanded using only two OPs { b, (n)}izl_MO such that A(n) is
defined asin Eq. (15) with {a, = 1}i:1--M0 and My=2. Figure 3(a) depicts thereal

part of x(n) and Fig. 3(b) shows the time variation of A(n). From Eq. (17) we get
the estimated decomposition coefficients { &} as depicted in Fig. 3(c).
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©

Fig. 3: (@ The real part of x(n), (b) A(n) for M=2 and {&=1}i;,, (¢) The estimated
expansion coefficients of A(n) when M=2.

From the above figure we observe that the coefficients of the decomposition
go down to zero when the index k exceeds the minimum value of M, i.e. when it
exceeds k=2. This concludes that to track A(n), we use an expansion order
M=2. The ES of x(n) is shown in Fig. 4(a) when the expansion order M=2 is
used. Fig. 4(b) shows the absolute value of the estimated amplitude compared
with the absolute value of the actual one at the frequency of interest.

(b)

Fig. 4 (a) The ESof x(n) with M =2, (b) A(n) (dotted) vs. A(n) (solid) when M =2.
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Consider now the above example but the expansion order of the SV
parameter A(n) is increased such that it can be expanded using six OPs
{bi(n)}izr6. In this case, assume that W, =0.7p and {a=1}i-1. 6. Fig. 5(a)
depicts the real part of x(n) while Fig. 5(b) shows the time variation of A(n).
Using a band-pass filter (BPF) centered at w=0.7p, then after demodulating its

output by € %™ we get the SV parameter A(n) and then decompose it to get
the expansion coefficients shown in Fig. 5(c). From Fig. 5(c) it is clear that the
coefficients of the decomposition go down to zero when the minimum value of
M is exceeded, i.e., when k>6. This concludes that to be able to track the SV
parameter A(n) of the non-stationary process x(n), the expansion order of the
ES should be M=6.

o V\/\/\A/\/\M/\/\N\WVV\AWA”'\/VV\N\W

50 80 100 120 o 20 40 a0
n n
I3 ' ' ' ' ' ' ' '

()
Fig. 5: (a) The real part of x(n), (b) A(n) for M =6 and {a=1}i=;. 6 ,(C) The estimated
expansion coefficients{a,} for M=6 and {a=1}i=1 6.

The ES of x(n) is depicted in Fig. 6(a) with M=6. Figures 6(b), 6(c), 7(a),
and 7(b) show the absolute value of A(n) compared to the absolute value of the
estimated ones, with order of expansions M=2,4,6, and 8, respectively. It is
clear from the figures that when the expansion order M increases, A(n)

becomes closer to A(n), then they coincide when it exceeds 6. This is obvious
from Fig. 7(b) where M=8.
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Fig. 6: (&) The ES of x(n) with M=6, (b) A(n) (dotted-line) vs. A(n) (solid-line) when M=2,
(© A(n) (dotted-line) vs. A(n) (solid-line) when M=4.

40 80 80 100 120
n

Fig. 7: (a) A(n) (dotted-ling) vs. A(n) (solid-line) when M=6, (b) A(n) (dotted-line) vs.
A(n) (solid-line) when M>6.

3.2 Multi-SV Parameters Examples

To illustrate the proposed approach, let us define a non-stationary process
X(n) such that

X(n) = 3 A (""" (24
k=0
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where: R is the number of sinusoidals in the process and is equal to two, W is
the angular frequency of thefirst sinusoid and is equal to 0.1p, wy isthe angular
frequency of the second sinusoid and is equal to 0.7p, and the SV parameter of
each sinusoid is represented as

A(m) =& ab () OEKER-1 (25)

i=1

with Mg=2, My=6, and{a, =1}., , . Thereal part of x(n) is depicted in Fig. 8(a).

o 2 4 6 10 12 14 16 18

(©
Fig. 8: (a) Thereal part of x(n)when Mo=2, My=6, and {@, =1}., , (b) The estimated

expansion cogfficients, ik, for {ax=1} when My=2, (c) The estimated expansion
coefficients, @i, for {&, =1}.,, whenM=6.

Demodulating x(n) by w, and then by w; we get Xo(n) and xi(n),
respectively, then, as shown in Fig. 9, passing these processes through the low
passfilters go(n) and ga(n), respectively.
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Fig. 9. An example of decomposing a signal with two SV parameters.

The filtering process is carried out under the condition that the
bandwidths BW £ BW and BW £ BW . Using an LPF
! () (n) A(N) () -5

9% 9
with a cut-off frequency w.=0.15p, the outputs of the filters are Aqo(n) and Aqy(n),
respectively.

©
Fig. 10: (a) The ES of x(n) using M=2 as an expansion order, (b) A(n) (dotted-line) vs.
Ao(n) (solid-line) when M=2, (¢) A y(n) (dotted-line) vs. A;(n) (solid-line) when
M=2.
Decomposing each one of Aqg(n) and As(n) separatdy, from Fig. 8(b) and
8(c), we get the estimated M,and M, to be approximately 2 and 6,
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respectively. Therefore, M =6 is the minimum expansion order of the EP
estimator of x(n). We observe from Figs. 8(b) and 8(c) the effects of the
filtering process on the estimates of the M's as some ripples through the
variation of k. Fig. 10 (a) shows the ES of x(n) when the expansion order M=2
is used. Figures 10(b) and 10(c) show the absolute values of Aq(n) and As(n)

compared with A)(n) and A(n), respectively, when M=2 is used as the
expansion order. For these two figures, we observe that A)(n) is closeto Aqg(n).

However A(n) is not comparable to Ay(n). This is due to the fact that the

expansion order M=2 is not enough for representing Ai(n) since it needs an
expansion order M >6 to be ableto track it. Therefore, the expansion order must
be increased to track the variation of A;(n). The ES of x(n) is depicted in Fig.
11(a) using an expansion order M=6. Fig. 11(b) and 11(c) show the absolute

values of Ag(n) and A;(n) compared with A)(n) and A(n), respectively, when

M=6 is used as the expansion order. It is clear in this case that an expansion
order M=6 is necessary to reasonably represent A;(n).

1.1

0.9H

o8k

o7k

06

a6k

04

a3F

ok

aip — —.

Fig. 11: (a) The ES of x(n) using M=6 as an expansion order, (b) A(n) (dotted-line) vs.

Ao(n) (solid-line) when M=6, () A (n) (dotted-line) vs. A;(n) (solid-line) when
M=6.
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3.2 EB and Nonstationary Noise

To show the power of the EB in removing the non-stationary additive
Gaussian noise, consider this example. According to Fig. 1, we have

z(n) = y(n) +h(n)
Let y(n) berepresented as
y(n) = A(nye""
where A(n) is decomposed as
M-1
An) = a ab; (n)
i=0
with M =3,a =1i, w,=.25%, and {b,(n)} is a set of orthonormal
polynomials (the Fourier orthonormal polynomials are considered). Also let

h(n) be a zero-mean, non-stationary Gaussian noise generated as follows:
h(n) =d(n)w(n)
where d(n) is a deterministic signal and w(n) is a zero-mean, unit variance
stationary Gaussian noise and independent of y(n). Obviously, E{h(n)}=0 and
sy (n)=d*(n)s; =d*(n).
The real part of the non-stationary signal y(n) is shown in Fig. 12(a) and

its ESis shown in Fig. 12(b). The real part of the noisy signal z(n) is shown in
Fig. 13(a). Figure 13(b) displays the ES of the noisy signal with SNR= 0 dB. Using

60 Monte-Carlo runs in such a way that z" (n) = y(n)+h®(n),i =1,2....,60,
Fig. 14(a) shows the real part of the reconstructed signal y(n) versus the
original one, y(n), and Fig. 14(b) displays the ES of y(n) after utilizing the
evolutionary bispectrum to remove the noise.

0.3

03

o 1 » a‘on © % %
@
Fig. 12: (a) Thereal part of y(n), (b) The ES of y(n).




Abdullah Al-Shoshan 48

06

@ (b)

Fig. 14 (a) The real part of Y(N) vs. y(n) (smooth), (b) The ES of the signal Y(N)
processed by the EB.

4. Conclusions

In this paper, an algorithm for estimating the SV parameters, and hence,
the TF kernel of a non-stationary process by using orthogonal projection theory
was proposed. This estimated TF kernel could be used for estimating the ES of
a non-stationary process with an order based on the dimensionality of the
expanding OPs. In the proposed method the process was decomposed to basic
elements by projecting it, recursively, onto elementary OPs. Two cases were
considered: Single and multiple SV parameters. Some simulations were
presented when the process had ether single or multiple SV parameters.
Moreover, since the evolutionary bispectrum of a process is identically zero, it
could be used to remove such noise when it is symmetrically distributed.



49

Evolutionary Spectrum and Bispectrum Estimation of a Non-Stationary Process

References

[1] Cohen, L., Time-Frequency Distributions-A Review, Proc. |EEE, 77(7): 941-981
(1989).

[2] Bhagavan, C. S. K., On Non-Stationary Time Series, E. J. Hannan, P. R. Krishnaiah,
M. M. Rao (Ed.), Handbook of Statics, Elsevier Science Publishers, B. V., 5: 311-320
(1985).

[3] Auger, F. and Flandrin, P., Generdization of the Reassignment Method to All Bilinear
Time-Frequency and Time-Scale Representations, ICASSP, Australia, 4: 317-320
(1994).

[4] Evrengul, H., Tanriverdi, H., Dursunoglu, D., Kaftan, A., Kuru, O., Unlu, U., and
Kilic, M., Time and frequency domain anayses of heart rate variability in patients with
epilepsy, Epilepsy Research, 63: 2-3, 131-139 (2005).

[5] Dwyer, R.F., Range and Doppler Information from Fourth-Order Spectra, IEEE J.
Oceanic Eng., 16: 233-243 (1991).

[6] El-Jaroudi, A., Redfern, M. S, Chaparro, L. F. and Furman, J. M., The Application
of Time-Frequency Methods to the Analysis of Postural Sway, Proceedings of the
IEEE, 84: 9, 1312-1318 (1996).

[7] Boashash, B. and Rigtic, B., Time-Varying Higher-Order Cumulant Spectra:
Application to The Analysis of Composite FM Signals in Multiplicative and Additive
Noise, ICASSP, Austrdia, 4: 325-328 (1994).

[8] Priestley, M. B., Non-linear and Non-stationary Time Series Analysis, New York,
NY :Academic Press, (1988).

[9] Al-Shoshan, A.l. and Chaparro, L.F., “Identification of Non-minimum Phase Systems
Using the Evolutionary Spectral Theory,” Sgnal Processing (Elsevier Science), 55: 1,
79-92 (1996).

[10] Rao, S. T., The Fitting of Nonstationary Time Series Models with Time-Dependent
Parameters, J. Sat. Soc., Ser. B., 32: 312-322 (1970).

[11] Huang, N. C. and Aggarwal, J. K., On Linear Shift-Variant Digitd Filters, IEEE
Trans. on Circuits and Systems, 27: 8, 672-679 (1980).

[12] Amin, M. G., TimeVarying Spectrum Estimation For a General Class of
Nonstationary Processes, Proc. of the |[EEE, 74: 12, 1800-1802 (1986).

[13] Neuman, C.P. and Schonbach, D.I., Discrete (Legendre) Orthogonal Polynomials-A
survey, International J. Numerical Methods in Engineering, 8: 743-770 (1974).

[14] Kayhan, A.S,, El-Jaroudi, A. and Chaparro, L.F., Evolutionary Periodogram for
Non-Stationary Signals, |EEE Trans. on Sgnal Proc., 42: 1527-1536 (1994).

[15] Pol D. Spanos, Jale Tezcan and Petros Tratskas, Stochastic processes evolutionary
spectrum estimation via harmonic wavelets, Computer Methods in Applied Mechanics
and Engineering, 194:12-16, 1367-1383 (2005).

[16] Narasmhan, S.V. and Pavanalatha, S., Estimation of evolutionary spectrum based on
short time Fourier transform and modified group delay, Sgnal Processing, 84: 11,
2139-2152 (2004).

[17] Selin, Aviyente and William, J. Williams, Multitaper marginal time-frequency
distributions, Sgnal Processing, 86: 2, 279-295 (2006).

[18] Pinnegar, C. Robert and Mansinha, Lalu, Time-frequency localization with the
Hartley S-transform, Sgnal Processing, 84: 12, 2437-2442 (2004).

[19] Shah, S. 1., Chaparro, L. F. and Kayhan, A. S, Evolutionary Maximum Entropy
Spectral Analysis, ICASSP94, Australia, 4: 285-289 (1994).

[20] Akan, A. and Chaparro, L. F., Evolutionary chirp representation of non-stationary
signals via Gabor transform, Sgnal Processing, 81: 11, 2429-2436 (2001).

[21] Khan, H. and Chaparro, L.F., Formulation and Implementation of the Non-stationary
Evolutionary Wiener Filtering, IEEE Sgnal Proc., 76: 253-267 (1999).

[22] Nason, G. P., Von Sachs R. andKroisandt, G., Waveet Processes and Adaptive Edimetion of the
Eval utionary Wavd et Spectrum, Journal of Royal Satidical Sodidly, Sar. B, 62: 271-292 (2000).



Abdullah Al-Shoshan

ajﬂmﬁcjugéw\wﬂ\jd))u\wﬁ\ yaagh

Ol gl asl ) i)
-rasnmé'.fl daals - QLA}.L{A.”} c._wla.ﬂiti_;.fs- c._wla.ﬂﬁ}lc’;.uﬁ

L0 small Ay yall ASLaall
shoshan@myway.com

Jesall cpadil 4550~ S o) 1 L alKil
e i s el el lay) Jaly disd) 5
& Akl sda e ndiud g Bl Glblely) 3k e el
Cpadty dalall il el cpe il e dege de gana
L skl Cadall 4t (S o o 23—l Jlg
@BM\)FQ‘)M\X‘UASLAAM‘)MSM&E“}
B LEY) clfla) Aa )y alsg) A4kl Lda B S Cus o))
3)1.5:}“ )\)sl.u\ e.ﬁr_ AAJJMJAA (»s:\g} u)\)ﬁu\ li;)q(;j‘_yj
Badlaiall Jsall e de sane dadiuly ) Sid) BEWY) Gish oo
s3a dac 33l LY ualie Gl Jid Jisal oda () Cua
cCaaddl 13 s ‘;} L) sy pac da sl =52 Jsal
codl g doly A sae & ds i) 43l Guls 5
Calall Hadial &) & 2 el ) ddle) 3Gl seliS
ciliysil i 43y (Evolutionary Bispectrum) il
S 5 3 LAY) pallad culS ol gu (Bl sl @l

UA)S\ & 3 yxlia


mailto:shoshan@myway.com

