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Abstract. The modeling of a non-stationary process is a problem of 
great interest and has many applications in diverse fields in signal 
processing. In this paper, an algorithm for estimating the shift-
variant (SV) parameters of a non-stationary process, using 
orthogonal projection, is proposed. These parameters can be used 
for estimating the evolutionary spectrum (ES), a time-frequency 
distribution, of a non-stationary process. The ES is then estimated 
with an order based on the dimensionality of the expanding 
orthogonal polynomials (OPs). In the proposed method the process 
is decomposed to its basic elements by projecting it, recursively, 
onto elementary OPs. Simulations are presented when the process 
has either single or multiple SV parameters. We have also shown 
that if the output of the SV system is corrupted by stationary/non-
stationary noise with symmetric distribution, the noise can be 
removed using the evolutionary bispectrum (EB), and simulation is 
given to show the powerful of the EB. 

 
Keywords: Non-Stationary Process, Shift-Variant (SV) parameters, Multi-

component Signal Analysis, Orthogonal Polynomial (OP), Time-
Frequency Distribution (TFD), Evolutionary Spectrum (ES), 
Evolutionary Bispectrum (EB). 

 

1.  Introduction 

The modeling of a non-stationary process and the estimation of its Time-
Frequency Distribution (TFD) are problems of great interest in diverse fields in 
signal processing and have many applications in speech and image processing, 
geophysics, bio-statistical signal processing, radar, medicine, and seismology [1-4]. For 
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each application, the modeling results in a set of mathematical equations, which can 
be used to understand the behavior of the process. When the process is non-
stationary, neither the classical power spectrum nor the bi-spectrum can handle 
the modeling problem since they do not reflect the time variation of the process 
characteristics [5]. An important issue in the modeling of a nonstationary process 
is the knowledge of the degree of the process nonstationarity [1-3]. In this paper, 
we will show that this can be reflected by the expansion order of the SV 
parameters embedded in the process. Hence, depending on the expansion order, 
the time-frequency (TF) kernel of the ES can be estimated. This method is 
proposed for estimating the order of expansion that will be used to give the 
minimum order needed for estimating the SV, and accordingly the optimum TF 
kernel, and thus the ES of the energy of the non-stationary process over time. In 
the proposed method the process is decomposed by its basic elements by 
projecting it, recursively, onto its elementary OPs.   

In previous works, experimental data and functions are represented or 
approximated by linear combinations of some predefined basis functions, which 
are usually of polynomial forms, bounded and closed under translation and 
scaling [5-9]. For these polynomials to exactly be able to represent a given data 
sequence, they must be able to span the whole space of the data sequence [9-11]. 
In the expansion approach, a set of OPs such as Hahn, Legendre, Laguerre, 
Jacobi, or Hermite polynomials can be used. However we need to know or 
estimate the number of OPs to be used in the fitting problem [12-13], and any 
time-frequency estimator, like evolutionary periodogram (EP) [14], short-time 
Fourier transform (STFT) and modified group delay function (MGDF) [16], 
multi-window Gabor expansion [20], multitaper marginal time–frequency 
distributions [17], Hartley S-transform [18], or maximum entropy (ME) [19] can be 
used. Mathematical expressions elucidating the analogy between the wavelets 
based spectral representation and the traditional one involving trigonometric 
functions are derived in [15]. In this paper, the Legendre OPs are used and the 
EP, an estimator of the evolutionary spectrum [8], is applied for estimating the 
ES of the process. The formal derivation of the ES is explained in Section 1.1 
and the derivation of the EB is discussed in Section 1.2. 

 
1.1 Evolutionary Spectrum 

 
According to the Wold-Cramer representation, a non-stationary process, 

x(n), admits a representation of the form 

∫
−

π

π

)(),(=)( wdZewnAnx jwn  

where A(n,w) is a slowly varying function of time. Define [14] 
)(),(=),( wdZwnAwnH  

then the ES of x(n) is given by  
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where x0(n) is the process component at the desired frequency w0 and )(
0

nyw  is 

a zero-mean modeling error including other components of x(n)  at the 
frequency of interest. The ES is then obtained for finite length of signals, 
{x(n) Nn ≤≤0| }, by assuming that ),( 0wnH  can be expressed in time as 
expansion of OP functions, 1},01|)({ −≤≤≤≤ NnMmnmβ  so that  

anbnawnH mm
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where t
Maaaa ],...,,[= 21 is a vector of random expansion coefficients and 

)](),...,(),([=)( 21 nnnnb Mβββ  is a vector of the OP functions at time n , 
where t  stands for matrix transpose. After manipulating the above equations we 
get the EP estimator of the ES expressed as [14]  

10|),(ˆ|=),(ˆ 2 −≤≤ NnwnH
M
NwnSEP  

where ),(ˆ wnH  is an estimate of the TF kernel and can be estimated as follows: 
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                                    (2) 

which uses a window that varies with time and constructed from a combination 
of OPs such that  

)()(=)( *

1=
knkw ii

M

i
n ββ∑                                           (3) 

The variation of w )(kn  depends on the value of M, which is the order of 
the OP set used. Although the parameter M plays an essential role in estimating 
the EP, no way so far has been proposed for finding the optimum value of M  
[20-22]. Actually, M is a process-dependent parameter, which is connected directly 
to the degree of nonstationarity of the process; therefore, this problem will be 
investigated throughout this paper. When x(n) is stationary, then the optimum 
value of M is one. However, when x(n) deviates from stationarity, M should be 
increased accordingly, depending on how far x(n) is from stationarity. Some 
simulation for modeling a non-stationary process is presented in Section 2 when 
the process has either single or multiple SV parameters.  
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1.2 Evolutionary Bispectrum 

 
When the additive noise η(n) shown in Fig. 1 is non-stationary, the 

traditional stationary techniques will not be able to remove this type of noise. 
However it will simply reduce the effect of non-stationary noise with symmetric 
probability density like Gaussian, Laplace, uniform, and Bernouli-Gaussian. To 
remove these types of noise, we propose using the evolutionary bispectrum 
(EB) introduced by Priestley [8]. 

 
 

Fig. 1. A noisy output of an LTI system. 

 

The EB is defined as follows [8, 9]. The third-order moment of x(n) is given 
by  

)}()()({=),,( 2121 mnxmnxnxEmmnR ++  
which, by using the Wold-Cramer representation, becomes  
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i.e., it vanishes except along the plane w1+w2+w3=0, where Se(w1,w2) is the 
bispectrum of a stationary white noise, e(n), then we have that  
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where: 
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and setting m1=m2=0, we get  
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therefore, the EB of x(n) is defined as 
                    

),(),(),(),(=),,( 21212121 wwSwwnHwnHwnHwwnS exxxx −−    (5) 
Assuming that e(n) is a zero-mean non-Gaussian white noise with 
E{e(n)e(n+m) (n+k)}=δ(m,k), then Se(w1,w2)=1 and therefore Eq. (5) becomes  

),(),(),(=),,( 212121 wwnHwnHwnHwwnS xxxx −−       (6) 
When e(n) is zero-mean Gaussian, then Se(w1,w2)=0 and accordingly 
Sx(n,w1,w2)=0. Therefore, the EB of a zero-mean non-stationary Gaussian 
process is identically zero. If the system hx(n,m) is not time varying, then 
Hx(n,w) will also be time-invariant, therefore, the EB in this case will reduce to  

)()()(=),( 212121 wwHwHwHwwS xxxx −−                 (7) 
which has a similar interpretation to that of the conventional bispectrum of a 
stationary process, namely that it is the triple product of the Hx(n,w) at 
frequencies w1, w2, and )( 21 ww −− . Let y(n) be a zero-mean, non-Gaussian 
process corrupted by an independent, identically distributed (i.i.d.) zero-mean, 
Gaussian noise, η(n), such that  

)()(=)( nnynz η+                                           (8) 
where:  y(n) and η(n) are independent, then the third order moment of z(n) is  

ηEEE yz +=     (9) 
where: E{.} stands for the expected value, Ez=E{z(n)z(n+m1)z(n+m2)}, 
Ey=E{y(n)y(n+m1)y(n+m2)}, and Ex=E{x(n)x(n+m1)x(n+m2)}. Since y(n) has a 
zero-mean value, its first, second, and third order time-varying cumulants 
(TVCs) reduce to its first, second, and third order time-varying moments, 
respectively, so  

)}()()({=),,( 2121 mnymnynyEmmnc y ++  
therefore, the third-order TVC of z(n) becomes  

),,(),,(=),,( 212121 mmncmmncmmnc yz η+                   (10) 
and  

})({})({=})({ 333 nEnyEnzE η+                             (11) 
but since η(n) is a zero-mean, Gaussian noise, then E{η(n)3}=0 and 

0=),,( 21 wwnSη , so 

})({=})({ 33 nyEnzE                                         (12) 
and hence  

),,(=),,( 2121 wwnSwwnS yz                                  (13) 
which indicates that the additive Gaussian noise does not affect the third-order 
TVC or the EB of y(n). We will show later an example that the additive i.i.d. 
zero-mean non-stationary Gaussian noise can be removed using the EB. In 
Section 2, the analysis of a process with a single component is presented. Also, 
a generalized form for estimating the order of nonstationarity process with 
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multiple SV parameters is presented in this section. Some simulations for both 
cases and for using the EB are given in Section 3. Section 4 concludes the 
paper. 
 

2. Analysis of a Signal with a Single and Multiple SV Parameters 
 
2.1 Analysis of a Signal with a Single SV Parameter 

 
Consider a linear-phase process x(n) with only one SV parameter A(n) at 

w= w0 such that  
nenAnx j 0)(=)( ω                                           (14) 

where A(n) can be expanded using M OPs set {βi(n)}  such that  

)(=)(
0

1=
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M
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β∑                                         (15) 

where the set {a i} are the expansion coefficients of A(n), and M0 is the 
expansion order. Demodulating x(n) by multiplying it by ne wj 0ˆ−  will lead to 

nwenAnx wj )ˆ)(=)(ˆ 00(
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−                                     (16) 
where 0ŵ , if unknown, is estimated from the conventional spectrum of the 
process and the difference between w0 and 0ŵ  is close to zero when the spectral 
estimator is good enough. Assuming that the set of OPs {βi(n)}  are known and 
using their orthogonality property, then, using the inner product associated with 
them, we get  
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where ak=0 for k >M0 and we have used the property of orthogonality  

)(=)()(
1

0=
iknn ik

N

n
−∑

−

δββ                                           (18) 

Therefore, if we increase k until we reach D(k)=0 we will get the value of M0 as 
the supremum of k. Hence if we define a set K={k | D(k) ≠ 0}, the minimum 
expansion order of the SV parameter A(n) is defined as 0M̂ =supk(K). After 
estimating M0, one then estimates the ES of x(n) using an expansion order M 
equals to 0M̂ . 
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2.2 Analysis of a Signal with Multiple SV Parameters 

Assuming that the process under consideration has more than one SV 
parameter, then using the sinusoidal representation of a SV spectra process, x(n) 
can be represented as  

nenAnx kj
k

R

k

ω)(=)(
1

0=
∑

−

                                             (19) 

where: R is the number of sinusoidals in x(n), and Ak(n), the SV parameter of 
the kth sinusoidal, is represented as 

10)(=)(
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i
k β                               (20) 

where: {aki} are the composition coefficients of Ak(n), {βi(n)} is a set of OPs, 
and Mk is the number of coefficients used for expanding Ak(n). To resolve these 
SV parameters, we demodulate x(n) by ne rjw−  to get the sub-process                                                           
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and then passing xr(n) through a low pass filter {gr(n)} whose bandwidth is 
larger than the bandwidth of Ar(n)  and assuming a non-overlapping case, we 
get 
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and decomposing )(~ nxr  using the OP set {βi(n)}, as shown in Fig. 2, we get 
from the inner product  
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where: u(k) is the discrete-time unit-step function. Since ark=0 for k>Mr, 
Cr(k)=0  for k>Mr and r>R-1. Therefore, the decomposition order k should be 
increased until  

0=)(=)( maxrr kCkC  
where:  

}{= Ksupk kmax  
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Fig. 2. Multi-SV Parameters decomposition. 
 

Picking up the least upper bound of the estimated M's, i.e., 
}ˆ,...,ˆ,ˆ{=ˆ

110 −RMMMmaxM , to be the order of expansion of the EP estimator 
over the whole TF domain of the ES which implies that ark=0 for k>Mr. Another 
way of estimating the ES is to use different values of M for different ranges of 
frequencies according to the different values of the estimated M 's, i.e., dividing 
the ES into a couple of bands each with different values of expansion order M. 
Two difficulties with this algorithm are: 1): the need to know the frequency of 
the sinusoidal components of x(n), 2): since in practice we would not know the 
original polynomials, the value of M depends on the polynomials used to 
represent A(n). The first problem can be remedied if the phase of each 
component is linear. When this is the case, the frequency of each sinusoidal can 
be estimated from the frequency spectrum of the process. For the second 
problem, one would expect different values for different sets of polynomials. 
The above algorithm is illustrated by means of some examples in the following 
section. 

3. Simulations 
 
3.1 Single SV Parameter Examples 

Sequences such as (14) may represent amplitude-modulated harmonics 
such as those arising in radar, sonar, and communication systems; an example 
occurring in active sonar systems is found in Ref. [8]. Assuming we have the 
non-stationary process defined as in Eq. (14) with w0=0.1π radians and the SV 
parameter A(n) is expanded using only two OPs 

01..=)}({ Mii nβ  such that A(n) is 

defined as in Eq. (15) with 
01..=1}={ Miia  and M0=2. Figure 3(a) depicts the real 

part of x(n) and Fig. 3(b) shows the time variation of A(n). From Eq. (17) we get 
the estimated decomposition coefficients {a i} as depicted in Fig. 3(c). 
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                                        (a)                                  (b) 

 
(c) 

 
Fig. 3: (a) The real part of x(n), (b) A(n)  for M=2 and {ai=1}i=1,2, (c) The estimated 

expansion coefficients of A(n)  when M=2. 
 

From the above figure we observe that the coefficients of the decomposition 
go down to zero when the index k exceeds the minimum value of M, i.e. when it 
exceeds k=2. This concludes that to track A(n), we use an expansion order 
M=2. The ES of x(n) is shown in Fig. 4(a) when the expansion order M=2 is 
used. Fig. 4(b) shows the absolute value of the estimated amplitude compared 
with the absolute value of the actual one at the frequency of interest. 

 

  
                           (a)                           (b) 

 

Fig. 4:  (a) The ES of x(n) with M =2, (b) )(ˆ nA  (dotted) vs. A(n)  (solid) when M =2. 
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Consider now the above example but the expansion order of the SV 
parameter A(n)  is increased such that it can be expanded using six OPs 
{βi(n)}i=1..6. In this case, assume that π0.7=0w  and {a i=1}i=1.. 6. Fig. 5(a) 
depicts the real part of x(n) while Fig. 5(b) shows the time variation of A(n). 
Using a band-pass filter (BPF) centered at w=0.7π, then after demodulating its 
output by nje π0.7−  we get the SV parameter A(n) and then decompose it to get 
the expansion coefficients shown in Fig. 5(c). From Fig. 5(c) it is clear that the 
coefficients of the decomposition go down to zero when the minimum value of 
M is exceeded, i.e., when k>6. This concludes that to be able to track the SV 
parameter A(n)  of the non-stationary process x(n), the expansion order of the 
ES should be M=6. 

 

 
                                         (a)                      (b) 

 
(c) 

Fig. 5: (a) The real part of x(n), (b) A(n) for M =6 and {ai=1}i=1.. 6 ,(c) The estimated 
expansion coefficients {ak} for M=6 and {ai=1}i=1.. 6.     

 
The ES of x(n) is depicted in Fig. 6(a) with M=6. Figures 6(b), 6(c), 7(a), 

and 7(b) show the absolute value of A(n) compared to the absolute value of the 
estimated ones, with order of expansions M=2,4,6, and 8, respectively. It is 
clear from the figures that when the expansion order M increases, )(ˆ nA  
becomes closer to A(n), then they coincide when it exceeds 6. This is obvious 
from Fig. 7(b) where M=8. 
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                                         (a)                      (b) 

 
(c) 

 

Fig. 6: (a) The ES of x(n) with M=6, (b) )(ˆ nA  (dotted-line) vs. A(n) (solid-line) when M=2, 

(c) )(ˆ nA  (dotted-line) vs. A(n) (solid-line) when M=4.   
   

    
                                              (a)                                                          (b) 

Fig. 7: (a) )(ˆ nA  (dotted-line) vs. A(n) (solid-line) when M=6, (b) )(ˆ nA  (dotted-line) vs. 
A(n) (solid-line) when M>6. 

 
3.2 Multi-SV Parameters Examples 

To illustrate the proposed approach, let us define a non-stationary process 
x(n) such that  

nenAnx kj
k

R
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0=
∑

−

                                (24) 
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where: R is the number of sinusoidals in the process and is equal to two, w0 is 
the angular frequency of the first sinusoid and is equal to 0.1π, w1 is the angular 
frequency of the second sinusoid and is equal to 0.7π, and the SV parameter of 
each sinusoid is represented as  

10)(=)(
1=

−≤≤∑ RknanA iki

kM

i
k β                       (25) 

with M0=2, M1=6, and kiika ,1}={ ∀ . The real part of x(n) is depicted in Fig. 8(a).  
 
 

 
                                              (a)                                                   (b) 

 
(c) 

 
Fig. 8: (a) The real part of x(n) when M0=2, M1=6, and kiika ,1}={ ∀  (b) The estimated 

expansion coefficients, ika
∧

, for {aik=1} when M0=2, (c) The estimated expansion 
coefficients, ika

∧

, for kiika ,1}={ ∀  when M1=6. 
 

Demodulating x(n) by w0, and then by w1 we get x0(n) and x1(n), 
respectively, then, as shown in Fig. 9, passing these processes through the low 
pass filters g0(n) and g1(n), respectively.  
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Fig. 9. An example of decomposing a signal with two SV parameters. 
 

The filtering process is carried out under the condition that the 
bandwidths )()( 00 nBWnBW

gA
≤  and )()( 11 nBWnBW

gA
≤ . Using an LPF 

with a cut-off frequency wc=0.15π, the outputs of the filters are A0(n) and A1(n), 
respectively.  

 

  
                                              (a)                                                   (b) 

 
(c) 

Fig. 10: (a) The ES of x(n) using M=2 as an expansion order, (b) Â0(n) (dotted-line) vs. 

A0(n) (solid-line) when M=2, (c) Â1(n) (dotted-line) vs. A1(n) (solid-line) when 
M=2. 

 
Decomposing each one of A0(n) and A1(n) separately, from Fig. 8(b) and 

8(c), we get the estimated 10
ˆˆ MandM  to be approximately 2 and 6, 
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respectively. Therefore, M̂ =6 is the minimum expansion order of the EP 
estimator of x(n). We observe from Figs. 8(b) and 8(c) the effects of the 
filtering process on the estimates of the M's as some ripples through the 
variation of k. Fig. 10 (a) shows the ES of x(n) when the expansion order M=2 
is used. Figures 10(b) and 10(c) show the absolute values of A0(n) and A1(n) 
compared with )(ˆ

0 nA  and )(ˆ
1 nA , respectively, when M=2  is used as the 

expansion order. For these two figures, we observe that )(ˆ
0 nA  is close to A0(n). 

However )(ˆ
1 nA  is not comparable to A1(n). This is due to the fact that the 

expansion order M=2 is not enough for representing A1(n) since it needs an 
expansion order M >6 to be able to track it. Therefore, the expansion order must 
be increased to track the variation of A1(n). The ES of x(n) is depicted in Fig. 
11(a) using an expansion order M=6. Fig. 11(b) and 11(c) show the absolute 
values of A0(n) and A1(n) compared with )(ˆ

0 nA  and )(ˆ
1 nA , respectively, when 

M=6 is used as the expansion order. It is clear in this case that an expansion 
order M=6 is necessary to reasonably represent A1(n). 

 
 

  
                                      (a)                                                                       (b) 

 
(c) 

 

Fig. 11: (a) The ES of x(n) using M=6 as an expansion order, (b) Â0(n) (dotted-line) vs. 

A0(n) (solid-line) when M=6, (c) Â1(n) (dotted-line) vs. A1(n) (solid-line) when 
M=6.   
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3.2 EB and Nonstationary Noise 

To show the power of the EB in removing the non-stationary additive 
Gaussian noise, consider this example. According to Fig. 1, we have  

)()(=)( nnynz η+  
Let y(n) be represented as  

nenAny jw0)(=)(  
where A(n) is decomposed as  

)(=)(
1

0=
nanA ii

M

i
β∑

−

 

with iaM i 1/=3,= , π.25=0w , and )}({ niβ  is a set of orthonormal 
polynomials (the Fourier orthonormal polynomials are considered). Also let 
η(n) be a zero-mean, non-stationary Gaussian noise generated as follows: 

)()(=)( nwndnη  

where d(n) is a deterministic signal and w(n) is a zero-mean, unit variance 
stationary Gaussian noise and independent of y(n). Obviously, E{η(n)}=0 and 

)(=)(=)( 2222 ndndn wσση . 
The real part of the non-stationary signal y(n) is shown in Fig. 12(a) and 

its ES is shown in Fig. 12(b). The real part of the noisy signal z(n) is shown in 
Fig. 13(a). Figure 13(b) displays the ES of the noisy signal with SNR= 0 dB. Using 
60 Monte-Carlo runs in such a way that 1,2,...,60=),()(=)( )()( innynz ii η+ , 
Fig. 14(a) shows the real part of the reconstructed signal )(ˆ ny  versus the 
original one, y(n), and Fig. 14(b) displays the ES of )(ˆ ny  after utilizing the 
evolutionary bispectrum to remove the noise. 

 

  
                                              (a)                                                                  (b) 

 
Fig. 12: (a) The real part of y(n), (b) The ES of y(n). 
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(a) (b) 

 
Fig. 13: (a) The real part of z(n) with SNR= 0 dB, (b) The ES of z(n). 

 
 

  
(a) (b) 
 

Fig. 14: (a) The real part of )(ˆ ny  vs. y(n) (smooth), (b) The ES of the signal )(ˆ ny  
processed by the EB. 

4. Conclusions 

In this paper, an algorithm for estimating the SV parameters, and hence, 
the TF kernel of a non-stationary process by using orthogonal projection theory 
was proposed. This estimated TF kernel could be used for estimating the ES of 
a non-stationary process with an order based on the dimensionality of the 
expanding OPs. In the proposed method the process was decomposed to basic 
elements by projecting it, recursively, onto elementary OPs. Two cases were 
considered: Single and multiple SV parameters. Some simulations were 
presented when the process had either single or multiple SV parameters. 
Moreover, since the evolutionary bispectrum of a process is identically zero, it 
could be used to remove such noise when it is symmetrically distributed. 
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والطيف الثنائي لإشارة غير مستقرة تقدير الطيف التطوري  
 

  عبداالله إبراهيم الشوشان
   - جامعة القصيم -كلية الحاسب والمعلومات - قسم علوم الحاسب

 سعودية المملكة العربية ال
shoshan@myway.com 

  
في هذا البحث، تم اقتراح طريقة لتخمين العوامل  .المستخلص

المتغيرة المخفية داخل الإشارات غير المستقرة، والتي تتغير مع 
ونستفيد من هذه الطريقة في . الزمن عن طريق الاسقاطات المتعامدة

من التطبيقات، من أهمها التطبيقات الخاصة بتخمين مجموعة مهمة 
التردد أو ما يمكن تسميته الطيف التطوري للإشارة، -دوال الزمن

والتي يتم تطبيقها لمعرفة خصائص الإشارات غير المستقرة مع 
الزمن، حيث يتم في هذه الطريقة إيجاد درجة إحداثيات الإشارة، 

ويتم معرفة درجة عدم استقرار الإشارة . هاومن ثم درجة استقرار
عن طريق الإسقاط المتكرر باستخدام مجموعة من الدوال المتعامدة، 
حيث إن هذه الدوال تمثل أساس عناصر الإشارة، وزيادة عدد هذه 

وفي طيات هذا البحث، . الدوال يوضح زيادة درجة عدم الاستقرار
بيانية توضيحية، أثبتت تم تطبيق الطريقة المقترحة في عدة أمثلة 

إضافة إلى ذلك فقد تم اقتراح استخدام الطيف . كفاءة الطريقة
لإزالة تأثير التشويشات ) Evolutionary Bispectrum(الثنائي

ذات التوزيع التماثلي، سواء كانت خصائص الإشارة مستقرة أو 
 .متغيرة مع الزمن
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